"It is the combination of life forms and their interactions with each other and with the rest of the environment that has made Earth a uniquely habitable place for humans."

Convention on Biological Diversity

Ensuring food Production

Native biodiversity provides pollination and biological control services

Jason M. Tylianakis
School of Biological Sciences
University of Canterbury
New Zealand

Biodiversity loss

- Land use change drives extinctions
- Extinction rates 100-1000 times prehuman.

"What good are all those species that man can not eat nor sell"?

Odum (1971)

Ecosystem services

76% of our food crops (35% of food volume) depend on animal pollination.

Natural enemies provide \$400 billion worth of pest/disease control each year.

Does biodiversity affect these services?

Biodiversity and ecosystem functioning

Niche complementarity among species.

Loss of function

 Functional niche complementarity among pumpkin pollinators in Indonesia.

Hoehn, Tscharntke, Tylianakis & Steffan-Dewenter (2008) Proc. Roy. Soc. Lond. B

Loss of function

 Parasitoid diversity affects parasitism rates and stability in Ecuador.

Tylianakis, Tscharntke & Klein (2006) *Ecology* Veddeler, Tylianakis, Tscharntke & Klein (2010) *Oecologia*

Loss of function

 Biodiversity loss can reduce ecosystem process rates, particularly in natural environments.

Tylianakis, Rand, Kahmen, Klein, Buchmann, Perner & Tscharntke (2008) PLoS Biol.

Loss of plant diversity

Tscharntke et al. (2006)

Diversity begets diversity

Plant diversity correlated with insect diversity

Bees: $F_{1,77.6} = 23.09$, P < 0.0001 Wasps: $F_{1.67.0} = 10.46$, P < 0.002

Tylianakis, Klein, Lozada & Tscharntke (2006) J. Biogeogr.

Biodiversity loss

"What escapes the eye, however, is a much more insidious kind of extinction: the extinction of ecological interactions"

Daniel Janzen (1974)

Plant-animal interactions

Land use change affects interactions:

Tylianakis, Didham, Bascompte & Wardle (2008) Ecol. Lett. 11, 1351-1363

Parasitoid-host webs in Ecuador

Management intensity

Tylianakis, Tscharntke & Lewis (2007) Nature

Parasitoid-host webs in Ecuador

Tylianakis, Tscharntke & Lewis (2007) Nature

Parasitoid-host webs in Ecuador

Tylianakis, Tscharntke & Lewis (2007) Nature

Parasitoid-host webs in Ecuador

Parasitoid-host webs in Ecuador

Food web structure

With increasing habitat modification: diversity of parasitoids attacking each bee or wasp species increased.

Increasing total rates of parasitism

 $F_{4,43} = 93823$ P < 0.0001

Conserving biodiversity

"We are obviously past any point where strategies that focus on conservation of pristine habitat are sufficient for the job"

Novacek & Cleland (2001)

Softer effects on biodiversity in Ecuador.

Tylianakis, Klein & Tscharntke (2005) Ecology

Softer effects on biodiversity in Ecuador.

Teodoro et al. (submitted)

Ants, spiders and beetles highest diversity in managed coffee agroforests.

Agroforest intensification: shade-sun grown

 Cacao intensification reduces bee biodiversity in Sulawesi.

Tscharntke et al. (2008) Ecology

Cacao agroforest intensification

The yellow crazy ant *Anoplolepis* gracilipes in cacao agroforests in Sulawesi.

Probability of Crazy ants being present

Effects on other species

Bos, Tylianakis, Steffan-Dewenter & Tscharntke (2008) Biological Invasions

Mosaic landscapes

Beta diversity and conservation at the

landscape scale

Tylianakis, Klein & Tscharntke (2005) *Ecology*

Summary

- Land use intensification drives extinctions of species and alters the ways they interact.
- Lost biodiversity may result in reduced rates of pollination and biological control.
- In addition to reduced mean rates, stability in ecosystem services may also decline.
- Biodiversity acts as insurance in changing conditions, and altered food web structure may affect resilience to other environmental changes.
- 'Soft' management and mosaic landscapes may have benefits in target and adjacent habitats.

Acknowledgements

- Funding: OECD, BMBF (Germany), Marsden Fund (New Zealand).
- Field/ laboratory assistance: Cesar Calderon, Jubian Casquete, Angel Choez, Jesus Lino, Jose "Pepe" Pico, Gricel Sacoto, C. Oswaldo Valarezo.
- Collaborators: Jordi Bascompte, Merijn Bos, Nina Buchmann, Raphael Didham, Patrick Höhn, Ansgar Kahmen, Alex Klein, Owen Lewis, Anders Nielsen, Jörg Perner, Ingolf Steffan-Dewenter, Teja Tscharntke, Dorthe Veddeler, David Wardle.

