Valuation of Ecosystem Services : Key to PES

Evidences from TEEB

Pushpam Kumar, Ph.D.

(Scientific Coordinator, TEEB) School of Environmental Sciences University of Liverpool (Pushpam@liv.ac.uk)

5/13/2010

Meaning and Notion of PES

- · Many terms but same notion
- 'Market for Ecosystem Services', 'Compensation for Conservation', 'Payment for Ecosystem Services', 'Benefits transfer for conservation', 'Benefit sharing for conservation' etc
- · Context of PES
 - ➤ Payment for Biodiversity (upfront and contingent payment to locals by the pharmaceutical firms for supply of genetic materials-Merck + INBio)
 - ➤ Payment for Hydrological function (Catskill)
 - ➤ Payment for Carbon Credit (under CDM)

Critical Precondition of PES

Conditions for Successful PES

- Assessment of physical ecosystem services (biophysical relationship) with definite space and time dimension
- Economic Estimate of ecosystems services
- Availability of Buyer(s) and Seller(s)
- Definite (enforceable) Property Rights
- Enabling Institutional conditions
- Skilled manpower (adept in conducting credible economic estimates)
- Social Trust

Background: TEEB's Genesis

Potsdam 2007: meeting of the environment ministers of the G8 countries and the five major newly industrialising countries

Potsdam Initiative - Biological Diversity 2010"

1) The economic significance of the global loss of biological diversity

In a global study we will initiate the process of analysing the global economic **benefit of biological diversity**,

the costs of the loss of biodiversity and

the failure to take protective measures versus the costs of effective conservation.

4

Sub Global Assessments (SGAs): MA Follow Ups

A network of sub-global assessments was created under the overall MA Follow-up Programme to favouring crossfertilization and sharing experiences among SGA practitioners, as well as to enhancing links between sub-global activities and international processes

SGAs LOCATIONS (as at September 2009)

Stern Report 2006

- 1. No action costs 5% of the global GDP, could go up to 20% of the GDP if comprehensive risks and impacts accounted
- 2. Actions (reducing GHGs) costs approximately 1% of the global GDP
- 3. Global investment and production pattern would further accelerate the problem of global warming
- 4. If no action taken, by 2035, the temperature to rise by 2 degree C
- 5. Responsibility is common but differentiated
- 6. The costs of taking action are not evenly distributed

Overarching Objectives of TEEB

✓TEEB aims to strengthen economics as an instrument in biodiversity policy through improved understanding of the benefits from biodiversity, ecosystem services and the costs of their loss.

✓TEEB synthesizes state-of-the-art scientific and applied knowledge for the main types of ecosystems worldwide. It will propose a selection of cost-effective policy options for protecting biodiversity and ecosystem services.

✓TEEB aims to help policy makers, local authorities, companies and individuals in making decisions with respect to their responsibilities in safeguarding biodiversity.

10

Ecosystem Service and Biodiversity

Component of biodiversity	Example of ecosystem service	Sources
Genetic variability	Medicinal products	Chai et al. (1989)
Population sizes and biomass	Food from crops and animals	Kontoleon et al. (2008)
Species assemblages, communities and structures	Habitat provision and recreation	Rosenberg et al. (2000)
Interactions between organisms and their abiotic environment	Water purification	Hefting et al. (2003)
Interactions between and among individuals and species	Pollination and biological control	Messelink et al. (2008)

5/13/2010 13

Change of Landuse (area coverage) across all biomes – Global Total

Actual	2000	2050	Difference
Area	million km2	million km2	2000 to 2050
Natural areas	65.5	58.0	-11%
Bare natural	3.3	3.0	-9%
Forest managed	4.2	7.0	70%
Extensive agriculture	5.0	3.0	-39%
Intensive agriculture	11.0	15.8	44%
Woody biofuels	0.1	0.5	626%
Cultivated grazing	19.1	20.8	9%
Artificial surfaces	0.2	0.2	0%
World Total *	108.4	108.4	0%

[■] Natural areas loss is 7.5m km2 - broadly equivalent to the area of the Australia.

2

Loss of Quality / Degradation Global total

Loss of quality - due to pollution, fragmentation, infrastructure and climate impacts (Global average all biomes)

Mean Species Abundance indicator

Mean species abundance change for different land use categories	MSA loss 2000 to 2050
Natural areas	11%
Bare natural	8%
Forest managed	20%
Extensive agriculture	8%
Intensive agriculture	-2%
Woody biofuels	0%
Cultivated grazing	14%
World Total	18%

22

^{*}Losses: natural, bare natural areas & extensive agriculture broadly equals the USA

Global Loss of Ecosystem services from land based ecosystems

	Relative to 2000	Relative to 2000
Area	Billion EUR	Equivalent to % of GDP in 2050
Natural areas	-15678	-7.97%
Forest managed	1852	0.95%
Extensive Agriculture	-1109	-0.57%
Intensive Agriculture	1303	0.67%
Woody biofuels	381	0.19%
Cultivated grazing	-786	-0.40%
World Total	-13938	-7.1%

The loss grows with each year of biodiversity and ecosystem loss!

Global **Loss of Ecosystem services Forestry biomes**

Forest biomes	Partial Estimation	Fuller Estimation
Boreal forest	-163	-1999
Tropical forest	-536	-3362
Warm mixed forest	-249	-2332
Temperate mixed forest	-190	-1372
Cool coniferous forest	-47	-701
Temperate deciduous forest	-133	-1025
Forest Total	-1317	-10791
Natural areas	-1552	-12310
World GDP in 2050 (trillion (10^12) EUR)*	105.5	
Losses of ESS from forests as share of % GDP	-0.7%	-5.5%
Losses of ESS from natural areas in forest biomes as share of % GDP	-0.8%	-6.3%

Taxonomy	y of Valuation	on Methods		
Approach		Method	Value	
	Price-based	Market prices	Direct and indirect use	
		Avoided cost	Direct and indirect use	
	Cost-based	Replacement cost	Direct and indirect use	
Market valuation	Cost-based	Mitigation / Restoration cost	Direct and indirect use	
	Production-based	Production function approach	Indirect use	
		Factor Income	Indirect use	
		Travel cost method	Direct (indirect) use	
Revealed preference		Hedonic pricing	Direct and indirect use	
		Contingent Valuation	Use and non-use	
Stated preference		Choice modelling/ Conjoint Analysis	Use and non-use	
		Contingent ranking	Use and non-use	
		Deliberative group valuation	Use and non-use	

Valuation Changes the Decision Making Criteria

Table 1: Benefits from ecosystem services in coral reef ecosystems

CORAL REEFS	Value of ecosystem services (in US\$ / ha / year – 2007 values)			
Ecosystem Service	Average	Maximum	Number of Studies	
Provisioning services				
Food	470	3,818	22	
Raw materials	400	1,990	5	
Ornamental resources	264	347	3	
Regulating services				
Climate regulation	648	648	3	
Moderation of extreme events	25,200	34,408	9	
Waste treatment / water purification	42	81	2	
Biological control	4	7	2	
Cultural Services				
Aesthetic information / Amenity	7,425	27,484	4	
Opportunities for recreation and tourism	79,099	1,063,946	29	
Information for cognitive development	2,154	6,461	4	
Total	115,704	1,139,190	83	
Supporting Services				
Maintenance of genetic diversity	13,541	57,133	7	

Note: these estimates are based on ongoing analyses for TEEB (TEEB Ecological and Economic Foundations, Chapter 7). As the TEEB data base and value-analysis are still under development, this table is for illustrative purposes only.

Sensitivity Analysis.... 5 key parameters

Ecosystem	Typical cost	Avg. benefit	NPV	IRR	BCR
Coral	542,497	129,245	1,165,988	7%	2.8
Coastal	232,674	73,852	935,379	11%	4.4
Mangroves	2,876	4,346	88,297	40%	26.8
Inland wetlands	33,007	14,245	171,296	12%	5.4
Lakes / rivers	4,032	3,803	69,687	27%	15.5
Tropical forest	3,448	7,022	148,675	50%	37.3
Temperate forests	2,387	1,618	26,273	20%	10.3
Woodland / shrubland	987	4,343	97,696	85%	84.3
Grasslands / rangelands	257	1,012	22,624	79%	75.1

	Ecosystem	Typical cost	Avg. benefit	NPV	IRR	BCR
П	Tropical forest	3,448	7,022	148,675	50%	37.3
1	Benefits peak @ 70%, inste		42%	31.5		
2	Costs @ 100%, instead of 1		57%	45.4		
3	Maintenance Cost (10%) stops after 5 years				51%	40.0
4	Benefits flows accounted for 50 yrs, instead of 40				50%	45.4
5	Discount rate 4%, instead	of 1%			50%	21.7

5/13/2010 30

Other Selective Examples of the PES and relevant Organisations Currently involved

- ☐ Alternatives to Slash-and-Burn
- □ · UNDP/UNEP Poverty and Environment Initiative
- **□**· Equator Initiative
- **□** GEF small grants program
- □ · Country poverty reduction strategies
- **□**· TNC Great Rivers Partnership
- □ · USAID and Development Alternatives Indonesia case study
- □ · CIFOR payments for ecosystem services Rewarding the Upland Poor
- **□** Environmental accounting initiatives
- ☐ · Brazil Value Added Tax and links to payments for ES