(続)隣り合う細胞が辿る異なる運命 ~木部繊維は細胞壁の堆積量を感知する~

1. 一つ一つの木部繊維で異なる遺伝子セット が機能し細胞壁(二次壁)が堆積する

木材は大量の細胞が幾重にも積層した超集合 体です。木材を構成する細胞は広葉樹と針葉 樹では異なっており、広葉樹では木部繊維、道 管要素、軸方向柔細胞、仮道管、放射柔細胞 などがあります。このうち木部繊維は特に厚い 細胞壁を持っており、樹木に物理的な強度を付 与しています。2019年の記事(林木育種情報 No.32, p7)で、二次壁形成のキー遺伝子である NST/SND転写因子遺伝子(ポプラには4遺伝子保 存されている)を完全に失ったポプラ4重変異体 について紹介しました。この変異体では約99% の木部繊維で二次壁が失われ、自立することが できず地面を這うように成長します。このように 4重変異体は非常に極端な形質を持ちます。私 達は、野生型(4つのNST/SND遺伝子が機能して いる個体)と4重変異体の中間的な形質を示す3 重変異体を新たに作製し、その木部組織構造を 詳細に観察しました。その結果、3重変異体で は約10%の木部繊維で二次壁が失われ、残りの 約90%の細胞では二次壁の形成が維持されまし た。しかし、二次壁を形成した木部繊維でも細 胞壁の厚さは約32%薄くなっていました。これ らの結果は、(1)一つ一つの木部繊維では機能 するNST/SND転写因子が異なること、(2) 4つ のNST/SND遺伝子が協調的に機能することで二 次壁の厚さが厚くなること、を示唆しています。 木材を顕微鏡で観察すると、個々の木部繊維は 非常に類似した構造をしています。一方で、今 回の結果は一つ一つの木部繊維が異なる遺伝子 セットを使い二次壁の性質を細かく調整してい ることを示唆しています。

2. 木部繊維は細胞壁の堆積量を感知する

上記で紹介した3重変異体と4重変異体は 「二次壁を持つ木部繊維と持たない木部繊維が 組織内に混在する」点で、自然界の樹木とは全

く異なる特徴を有しています。このような特徴 的な性質を持つ樹木をうまく活かすことによ り、これまで当然のことと思われてきた既知の 知見に新たな視点を提供することができます。

今回、私達が注目したのは樹木が幹の傾斜に 応答して樹形を維持するために形成する「あて 材」です。あて材は針葉樹と広葉樹では特徴が 異なっており、広葉樹が形成するあて材(引張 りあて材)では二次壁の内側にG層というセル ロースに富んだ細胞壁を形成することが知られ ています。不思議なことに、G層は必ず二次壁 の内側に形成されます。そこで、私達は3重変 異体と4重変異体を傾けて育て、G層形成の有 無を観察しました。その結果、3重変異体でも 4重変異体でも、二次壁を持たない木部繊維は G層を形成せず、二次壁を持つ木部繊維はG層 を形成することを発見しました(図)。この結果 は、G層の形成開始には二次壁の堆積が必要で あること、つまり一つ一つの木部繊維は二次壁 が堆積したことを感知してG層の形成を行って いることを示唆しています。これにより、これ までの研究で報告されてきた「二次壁+G層| という知見に、「個々の木部繊維は二次壁の堆 積量を感知してG層の形成が開始する」とい う新たな視点を提供することができました。本 成果の詳細は、Takata, Tsuyama, et al. (2021) Plant Journal, 108, 725-736. をご参照ください。

3重変異体のあて材部

4重変異体のあて材部

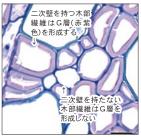


図 3重変異体と4重変異体でのあて材形成 Scale = 10 μ m

(森林バイオ研究センター 高田 直樹)