间

材積表調製業務資料 第1号

# 青森 営 林 局 広葉樹立木材積表調製說明書

昭和32年3月

林 野 庁

#### 青森営林局広葉樹立木材積表調製説明書

## 正 誤 表

| 頁           | 行                      | 誤 .                                                                                                            | Œ                                                                                                              |
|-------------|------------------------|----------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------|
| 9           | 第7表                    | 100— <sup>cm</sup>                                                                                             | 102— <sup>cm</sup>                                                                                             |
| 13          | 上から .5                 | 推定の誤差の分散(Sy.z1z2 <sup>3</sup> )                                                                                | 推定の誤差の分散 (Sy.z1z2 <sup>2</sup> )                                                                               |
| "           | <i>"</i> 6             | 標準誤差(Sy.zizi)                                                                                                  | 標準誤差(Sy·z1z2)                                                                                                  |
| "           | 下から 16                 | 有意水準 95%                                                                                                       | 有意水準 5%                                                                                                        |
| 22          | 下から 17                 | $los S^2$                                                                                                      | log s²                                                                                                         |
| -23         | 上から 8                  | $F=3.7554*>F_{0.05}=2.37$                                                                                      | $F=3.7554**>F_{0.01}=3.32$                                                                                     |
| 25          | 下から 5 (第 10 表)         | R <sup>a</sup> の列の 0.81202                                                                                     | 0.64847                                                                                                        |
| 27          | 上から 8                  | $F = 0.8303 < F_{0.05} = 1.57$                                                                                 | $F = 0.8325 < F_{0.05} = 1.57$                                                                                 |
| . 01        | 1 2 6 4 5 (86.40 - 10) | 込みにした回帰係数                                                                                                      | 込みにした回帰係数                                                                                                      |
| 31          | 上から 15 (第 13 表)        | b c                                                                                                            |                                                                                                                |
| ń           | 第 14 表                 | 真数で表わしたもの                                                                                                      |                                                                                                                |
|             |                        | $v = -0.06408d^{1.87135}h^{1.06862}$ $v = -0.04300d^{1.63840}h^{1.17848}$ $v = -0.07678d^{1.84678}h^{0.92548}$ | $v = -0.07678d^{1.84673}h^{0.92548}$ $v = -0.06408d^{1.87185}h^{1.06862}$ $v = -0.04300d^{1.83840}h^{1.17843}$ |
|             | 下から 2 (〃)              | 径級範囲の列の 7~2                                                                                                    | 72~                                                                                                            |
| 33          | 上から 14 (第 16 表)        | 平均直径の列の 26.0                                                                                                   | 20.0                                                                                                           |
| "           | 下から 7 (〃)              | II型の列の 2, 96.3, 71.5                                                                                           |                                                                                                                |
| / <b>//</b> | 下から 5 (〃)              | <i>"</i>                                                                                                       | 2, 96.3, 71.5                                                                                                  |
| 35          | 下から 3                  | $F = 4.6014 < F_{0.05} = 254$                                                                                  | $F=0.4601 < F_{0.05}=254$                                                                                      |
| 36          | 上から16(第17表)            | Ŷーy″ の列の −4.83                                                                                                 | -4.38                                                                                                          |
| 37          | 上から 8 (第18表)           | 幹材積の列の 2.0816                                                                                                  | 2.6816                                                                                                         |
| 38          | 下から 7 (第19表)           | Ⅲ型の列の 2,96.3,71.5                                                                                              |                                                                                                                |
| "           | " 5 (")                | " . <del>-   -   -</del>                                                                                       | 2, 96.3, 71.5                                                                                                  |
| 45          | 下から 17 (表)             | P = 11.60458 + 0.41804d                                                                                        | P = 11.60458 + 0.61804d                                                                                        |
| 47          | 上から 14 (〃)             | 林況の列の多属林                                                                                                       | 多層林                                                                                                            |
| "           | 下から 15 (〃)             | . "                                                                                                            | ブナ,ミズナラを主とする多層材                                                                                                |
| 49          | 下から 1 (〃)              | 平均幹材積の列の 9843                                                                                                  | 0.9843                                                                                                         |
| 56          | 上から 20 (〃)             | 胸高直径 30cm の列の 0.515                                                                                            | 0.551                                                                                                          |

## 青森當林局広葉樹立木材積表調製説明書

## 目 次

|   | エッ   | て な           | 1, 5 |    |            |           |   |   |           |             |      |           |      |      |       |      |           |           |      |      |      |      |      |             |       |     |    |
|---|------|---------------|------|----|------------|-----------|---|---|-----------|-------------|------|-----------|------|------|-------|------|-----------|-----------|------|------|------|------|------|-------------|-------|-----|----|
|   |      |               | 箌    |    |            |           |   |   |           |             |      |           |      |      |       |      |           |           |      |      |      |      |      |             | ••••• |     |    |
| 1 |      |               |      |    |            |           |   |   |           |             |      |           |      |      |       |      |           |           |      |      |      |      |      |             | ••••• |     |    |
| 2 |      |               |      |    |            |           |   |   |           |             |      |           |      |      |       |      |           |           |      |      |      |      |      |             |       |     |    |
|   |      |               |      |    |            |           |   |   |           |             |      |           |      |      |       |      |           |           |      |      |      |      |      |             | ••••• |     |    |
|   |      |               |      |    |            |           |   |   |           |             |      |           |      |      |       |      |           |           |      |      |      |      |      |             | ••••• |     |    |
|   |      |               |      |    |            |           |   |   |           |             |      |           |      |      |       |      |           |           |      |      |      |      |      |             | ••••• |     |    |
| 3 | · *  | 才積記           | 十算の  | 方法 | <b>ķ</b> . | • • • • • |   |   | • • • • • | <br>• • • • | •••• | • • • • • | •••• | •••• | ••••• | •••• | • • • • • | • • • • • | •••• | •••• | •••• | •••• | •••• | • • • • • • | ••••• | ••• | 3  |
|   |      |               |      |    |            |           |   |   |           |             |      |           |      |      |       |      |           |           |      |      |      |      |      |             | ••••• |     |    |
|   |      |               |      |    |            |           |   |   |           |             |      |           |      |      |       |      |           |           |      |      |      |      |      |             | ••••• |     |    |
| 4 |      |               |      |    |            |           |   |   |           |             |      |           |      |      |       |      |           |           |      |      |      |      |      |             | ••••• |     |    |
|   |      |               |      |    |            |           |   |   |           |             |      |           |      |      |       |      |           |           |      |      |      |      |      |             | 折     |     |    |
|   |      |               |      |    |            |           |   |   |           |             |      |           |      |      |       |      |           |           |      |      |      |      |      |             | ••••• |     |    |
|   |      |               |      |    |            |           |   |   |           |             |      |           |      |      |       |      |           |           |      |      |      |      |      |             | ••••• |     |    |
|   | =.   |               |      |    |            |           |   |   |           |             |      |           |      |      |       |      |           |           |      |      |      |      |      |             | ••••• |     |    |
|   | I    | -             |      |    |            | -         |   |   |           |             |      |           |      |      |       |      |           |           |      |      |      |      |      |             | ••••• |     |    |
| 1 |      |               |      |    |            |           |   |   |           |             |      |           |      |      |       |      |           |           |      |      |      |      |      |             | ••••• |     |    |
|   |      |               |      |    |            |           |   |   |           |             |      |           |      |      |       |      |           |           |      |      |      |      |      |             | ••••• |     |    |
|   |      |               |      |    |            |           |   |   |           |             |      |           |      |      |       |      |           |           |      |      |      |      |      |             | ••••• |     |    |
|   |      |               | -    |    |            |           |   |   |           |             |      |           |      |      |       |      |           |           |      |      |      |      |      |             | ••••• |     |    |
|   |      |               |      |    |            |           |   |   |           |             |      |           |      |      |       |      |           |           |      |      |      |      |      |             | ••••• |     |    |
|   |      |               |      |    |            |           |   |   |           |             |      |           |      |      |       |      |           |           |      |      |      |      |      |             | ••••• |     |    |
|   |      |               |      |    |            |           |   |   |           |             |      |           |      |      |       |      |           |           |      |      |      |      |      |             | ••••• |     |    |
|   |      |               |      |    |            |           |   |   |           |             |      |           |      |      |       |      |           |           |      |      |      |      |      |             |       |     |    |
|   |      |               |      |    |            |           |   |   |           |             |      |           |      |      |       |      |           |           |      |      |      |      |      |             | ••••• |     |    |
|   | đ    |               |      |    |            |           |   |   |           |             |      |           |      |      |       |      |           |           |      |      |      |      |      |             | ••••• |     |    |
|   |      | i.            |      |    |            |           |   |   |           |             |      |           |      |      |       |      |           |           |      |      |      |      |      |             | ••••• |     |    |
|   |      | ii.           |      |    |            |           |   |   |           |             |      |           |      |      |       |      |           |           |      |      |      |      |      |             | ••••• |     |    |
|   |      |               |      |    |            |           |   |   |           |             |      |           |      |      |       |      |           |           |      |      |      |      |      |             | ••••• |     |    |
| 2 |      |               |      |    |            |           |   |   |           |             |      |           |      |      |       |      |           |           |      |      |      |      |      |             | ••••• |     |    |
|   |      |               |      |    |            |           |   |   |           |             |      |           |      |      |       |      |           |           |      |      |      |      |      |             | ••••• |     |    |
|   |      |               |      |    |            |           |   |   |           |             |      |           |      |      |       |      |           |           |      |      |      |      |      |             | ••••• |     |    |
|   | _    | _             |      |    |            |           | - |   |           |             |      |           |      |      |       |      |           |           |      |      |      |      |      |             | ••••• |     |    |
|   | b    |               |      |    |            |           | - |   |           |             |      |           |      |      |       |      |           |           |      |      |      |      |      |             | ••••• |     |    |
|   | C    |               |      |    |            |           |   | - |           | -           |      |           |      |      |       |      |           |           |      |      |      |      |      |             |       |     |    |
|   | d    |               |      |    |            |           |   |   |           |             |      |           |      |      |       |      |           |           |      |      |      |      |      |             |       |     |    |
|   | - 11 | 11 <i>i</i> ł | ハ 宿ご | 皮の | ) (車       | ΠX,•••    |   |   |           | <br>        |      |           |      |      |       |      |           |           |      |      |      |      |      |             |       | 2   | .4 |

|               | 直径級別材積式の比較・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |    |
|---------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|
|               | . 分散の一様性の検定                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |    |
|               | . 回帰係数の差,回帰平面の高さの差の検定                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |    |
|               | a. 全径級を一括した場合の検定                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |    |
|               | i. 回帰係数間の差の検定                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |    |
|               | ii. 回帰平面間の高さの差の検定                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |    |
|               | b. 4~70cm の差の検定 ······                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |    |
|               | i . 回帰係数間の差の検定                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |    |
|               | c. 4~50cm の差の検定                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |    |
|               | i . 回帰係数間の差の検定                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 28 |
|               | d. 12~50cmの差の検定                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 28 |
|               | i . 回帰係数間の差の検定                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 28 |
|               | ii. 回帰平面間の高さの差の検定                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 29 |
|               | e. 52~70cmの差の検定                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 29 |
|               | i. 回帰係数間の差の検定                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 29 |
|               | ii. 回帰平面間の高さの差の検定                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 29 |
|               | f. 72cm~の差の検定                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 30 |
|               | i. 回帰係数間の差の検定                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 30 |
|               | ii. 回帰平面間の高さの差の検定                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |    |
| 2.            | 材 積式 の決定                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |    |
|               | ₩ 枝条率表の作成                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |    |
| 1.            | 枝条率推定式の吟味                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |    |
|               | a. 枝条率式の曲線性の検定                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |    |
| 2.            | 資料の吟味                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |    |
| 3.            | 樹種型間の差の検定                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |    |
| •             | a. 回帰係数の有意性の検定                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |    |
|               | b. 相関係数の有意性の検定                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |    |
|               | <ul><li>c. 樹種型間の回帰係数の有意差の検定</li></ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |    |
|               | i. 分散の一様性の検定・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |    |
|               | ii . 回帰係数の差の検定······                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |    |
|               | iii. 4~50cm の回帰係数の差の検定                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |    |
| 4.            | 枝条率計算式の決定                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |    |
| 4.            | The second secon |    |
| 1             | are the second                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |    |
| 1.            | <ul><li>幹 材 積 表</li><li>枝 条 率 表</li></ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |    |
| 2.            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |    |
| 1             | VI 他管内の材積表との比較<br>幹材積表の比較                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |    |
| 1.            | 年 付                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |    |
| 2.            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |    |
| 1             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |    |
| 1.            | 幹 材 積 表                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |    |
| 2.            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |    |
| J.            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |    |
| ्रेट<br>चार्च | す び                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |    |
| D 1 €         | alti (OTP) (O At V (B) 36 1 1 P) (B) (Fig. 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |    |

## まえがき

従来青森営林局では広葉樹材積表として全木材積表を使用していたが、昭和23年4月「経営規程」が施行され、材積はすべて幹材積によることになつたので、 広葉樹の幹材積表が必要となつた。したがつて現在の全木材積表を幹材積と枝条材積とに分けることを考究したが、現在の全木材積表作成 資料および 経緯が 不明なので 分割することができないから、 なるべく早い機会に作成することとし、とりあえず現在の全木材積表を使用し、 枝条材積は清野博士の「主要樹種材種別材積表調製に関する研究」」による粗朶材材積表(根元より皮付直径7 cm以下の材積)から、全木材積に対する 100 分率をもつて枝条材積を算出して使用していた。この間各営林局において材積表の問題が論議され、今後は全国的に統一ある方法で作成することになり、昭和26年8月、26年林野第11,231 号通牒によつて「主要樹種立木材積表調製資料測定要綱」」がきまつたから本局としては、昭和27、28年度、この要綱によつて資料を集めてきた。昭和29年7月内地各営林局の材積表業務担当官の打合会が催され、この席上で立木材積表作成方針が審議され、また、最近急速の進歩をとげた統計学を応用した作成方法について林業試験場大友測定研究室長の指導をえたので、昭和29年度には管内各営林署の協力を得て総数2,277本を集め幹材積表および枝条率表を作成した。

この材積表作成にあたつて林野庁・孕石技官,横瀬技官, 林業試験場・嶺元経営部長,小 幡経営部長,大友測定研究室長,同室各位の御指導を賜わり, また資料の収集に従事された 営林署の各位に対し合わせて謝意を表すものである。

#### ~ 資 料

#### 1. 資料の收集

本局管内広葉樹の蓄積(昭和27年度現在)は第1表のとおりで、プナが大部分を占め、ミヅナラ、イタヤ カエデ,トチ等がこれにつぎ,地域的には奥羽,北上山系によつて占められ,その樹種が多く用材として利用さ れているものが30余種もあり、伐採等の関係もあり任意抽出は不可能なので主として広葉樹の多く分布する

|     |      |   | 第1表 管                        | 内 広 葉     | 樹樹種別       | 」材 積       |   | (昭和27年到      | 見在)  |
|-----|------|---|------------------------------|-----------|------------|------------|---|--------------|------|
| 樹   | 種    | 材 | 種                            | 歩 合       | 樹          | 種          | 材 | 積            | 歩 合  |
| ブ   | ナ    |   | m <sup>3</sup><br>41,507,112 | %<br>52.4 | シ          | デ          |   | m³<br>61,915 | %    |
| ミヅ  | ナラ   |   | 10,510,216                   | 13.3      | <b>カ</b> ェ | デ          |   | 59,187       | 1    |
| イタヤ | カェデ  |   | 3,507,181                    | 4.4       | オニグ        | ルミ         |   | 54,398       | ł    |
| ۲   | チ    |   | 1,477,110                    | 1.9       | ハン         | ノキ         |   | 46,796       | ļ    |
| 7   | y    |   | 970,392                      | 1.2       | サク         | ラ          |   | 37,702       | ļ    |
| サワク | * ルミ |   | 699,707                      | 0.8       | ク ヌ        | ギ          |   | 26,434       | 0.6  |
| カン  | / バ  |   | 550,449                      | 0.7       | =          | $\nu$      |   | 23,799       | 1    |
| ホホ  | ノキ   |   | 395,658                      | 0.5       | ミ ヅ        | 丰          |   | 18,894       | İ    |
| カッ  | , ラ  |   | 342,540                      | 0.4       | ヤチ         | ダモ         |   | 18,026       | 1    |
| コナ  | - ラ  |   | 239,352                      | 0.3       | シナ         | ノキ         |   | 17,603       |      |
| ミ ツ | ° ,  |   | 160,400                      | 0.2       | アサ         | <b>y</b> " |   | 10,142       | ,    |
| ケ ナ | , +  |   | 146,671                      | 0.2       | その         | 他 広        |   | 18,163,915   | 22.9 |
| セン  | ノキ   |   | 140,124                      | 0.2       | 計          |            |   | 79,185,723   |      |

たゞしその他広には列記した樹種も含まれている。

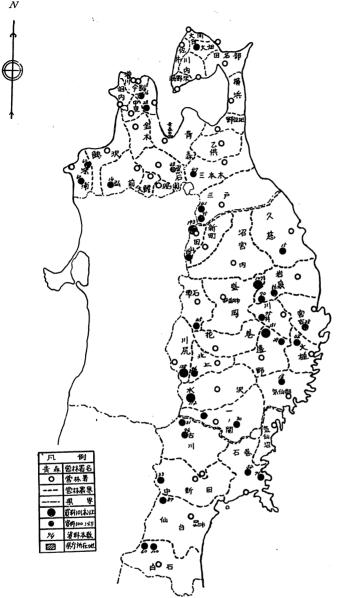
営林署を撰びその伐採個所から収集し、更に樹種を多く入れるため樹種を指定して若干の営林署に依頼して 集めたもので、収集した個所および本数は第2表のとおりである。

| *** |   |    |    |          |    |    |                   |     |      |     |    |    |    |           |   |                          |   |          |
|-----|---|----|----|----------|----|----|-------------------|-----|------|-----|----|----|----|-----------|---|--------------------------|---|----------|
|     | 県 | 営材 | 木署 | 経過       | 對区 | 林  | 小 班               | 本 数 |      | 県   | 営村 | 沐署 | 経済 | <b>営区</b> | 林 | 小 班                      | 本 | 数        |
| 青   | 森 | 蟹  | 田  | 蓬        | 田  | 0  | 143               | 2   | 28   | 岩 手 | 田  | 山  | 田  | Щ         | Δ | 101ろ <sub>2</sub>        |   | 193      |
|     |   |    |    | 蟹        | 田  | 0  | 55 <i>i</i> z     | 1   | 6    |     |    |    |    |           | 0 | 96،                      |   | 50       |
|     |   |    |    | 小        | 計  |    |                   | 4   | 4    |     |    |    | 小  | 計         |   |                          |   | 243      |
|     |   | 深  | 浦  | 深        | 浦  |    | 78i, v            | 12  | 20   |     | 盛  | 岡  | 姫  | 神         | 0 | 334ų·                    |   | 16       |
|     |   | 弘  | 前  | 目        | 屋  | ×  | 8 ၅               | 1   | 4    |     |    |    |    |           | ٥ | 283 <sub>\(\cdot\)</sub> |   | 91       |
|     |   | 黒  | 石  | 黒        | 石  | ×  | 32∤⊂              | 2   | 28   |     |    |    | 小  | 計         |   |                          | ĺ | 107      |
|     |   | 大  | 畑  | 大        | 畑  | 0  | 82 L              | 1   | 2    |     | 雫  | 石  | 雫  | 石         | × | 391,                     |   | 25       |
|     |   |    |    |          |    | 0  | 144Ն չ            | 2   | 29   |     | 北  | 上  | 岩  | 崎         |   | 6L·                      |   | 96       |
|     |   |    |    |          |    |    | 132 <sub>\</sub>  | 1   | 7    |     | Ш  | 尻  | 本  | 内         | _ | 27/C                     |   | 138      |
|     |   |    |    | 小        | 計  | ١. |                   | 5   | 8    |     | 水  | 沢  | 水  | 沢         | 0 | 83ろ                      |   | 37       |
|     |   | =2 | 木才 | 1-7      |    |    | 86 <sub>1</sub> \ | 4   | 17   |     |    |    |    |           | ۰ | 75i,                     |   | 75       |
|     |   | 三  | 戸  | 宣        | 戸  |    | 10t ·             |     | - 11 |     |    |    | 小  | 計         |   |                          |   | 112      |
|     |   |    |    | <u> </u> |    | -  | 100.              | 1   | -    |     |    | 関  |    | 関         | × | 25ろ                      |   | 8        |
| i   | 計 |    |    |          |    |    |                   | 44  | 7    |     | 小  | 計  |    |           | × | 5t ·                     |   | 30<br>38 |

第2表 調查個所一覧表

|   | 県 | 営村 | 木署        | 経治 | 對区             | 林       | 小班                        | 本 数  | 県 |      | 営村  | 沐署    | 経常   | 悠区  | 林      | 小班                | 本 | 数     |
|---|---|----|-----------|----|----------------|---------|---------------------------|------|---|------|-----|-------|------|-----|--------|-------------------|---|-------|
| 岩 | 手 | 久  | 慈         | 久  | 慈              | ×       | 56 L v.;                  | 15   | 計 |      |     |       |      |     |        |                   |   | 1,309 |
|   |   | 岩  | 泉         | 岩  | 泉              | 0       | 17t v                     | 70   | 宮 | 城    | 石   | 巻     | 石    | 巻   | '<br>ا | 153ı ·            |   | 52    |
|   |   |    |           |    |                | 0       | ۰ با9                     | 56   |   | -77( |     |       | 14   | .65 | 0      | 56ろ               |   | 50    |
|   |   |    |           | 小  | 計              |         |                           | 126  |   |      |     |       |      |     | 0      | 56を               |   | 9     |
|   |   | Л  | 井         | 門  | 馬              | ×       | 71ろ                       | 20   |   |      |     |       |      |     | 0      | 63 <sub>1</sub> C |   | 12    |
|   |   |    |           |    |                | ×       | 83∤⊂                      | 15   |   |      |     |       | 小    | 計   |        | ٥٥١٥              |   | 123   |
|   |   |    |           |    |                | ×       | 83 <i>[</i> F             | 2    |   |      |     | 111   | ŀ    |     |        | F1.               |   |       |
|   |   |    |           |    |                | ×       | ۰ ۵08                     | 3    |   |      | Ϊī  | Ш     | 栗    | 駒   | 0      | 51kg              |   | 94    |
|   |   |    |           |    |                | 0       | 44 ر ،                    | 35   |   |      | i   |       |      |     | ٥      | 39i ·             |   | 31    |
|   |   |    |           | 小  | 計              |         |                           | . 75 |   |      |     |       | 小    | 計   |        |                   |   | 125   |
|   |   | 宮  | तं        | 宫' | ı <sup>1</sup> | o       | 70/L                      | 38   |   |      | 仙   | 台     | 岳    | Щ   | Δ      | 29i,              |   | 80    |
|   |   | 遠  | 野         | 遠  | 野              | _       | 97 <sub>6</sub> s         | 151  |   |      | 白   | 石     | 自    | 石   | 0      | 50ろ               |   | 60    |
|   |   |    |           | 14 | - •            | ۵       | 461Z                      | 79   |   |      | !   |       |      |     | 0      | 107/z             |   | 100   |
|   |   |    |           | 小  | 計              | ĺ       | , _                       | 230  |   |      |     |       | 小    | 計   |        |                   |   | 160   |
|   |   | 大  | 槌         | 釜  | 石              | <br>  × | 64 L VI                   | 18   |   |      | 中李  | 折田    | 加    | 美   |        | 49VZ              |   | 33    |
|   |   | `  | ,         |    |                | ×       | 614.2                     | 30   |   |      | 1 7 | 711-1 | /311 |     |        |                   |   |       |
|   |   |    |           | 小  | 計              |         |                           | 48   | 計 |      |     |       |      |     |        |                   |   | 521   |
|   |   | 大舟 | <b>化波</b> | 大船 | <b></b><br>份渡  | ×       | 42 <sub>\(\lambda\)</sub> | 18   | 合 | 計    |     |       |      |     |        |                   |   | 2,277 |

。は枝条材積測定を兼ねて局担当員の調査したもの ×は樹種を指定して依頼したもの


△は調査木を局において指定し営林署に調査依頼したもの

調査地の位置は第1図で示したとおりで、その林況は附表第1表のとおりである。

#### 2. 測 定 方 法

この資料の測定方法は「主要樹種立木材積表調製資料測定要綱\*」に基いて,局担当者が枝条材積測定を兼 ねて全木を測定したもの,調査木を指定して幹材積計算に必要な因子の測定を営林署に依頼したもの,樹種 を指定して営林署に依頼したものゝ3種で供試木選定にあたつては、なるべく正常な形状をしているものを 調査するようにした。次に測定要領を説明すれば次のとおりである。

- イ. 幹材積計算に必要な因子の測定
  - a. 胸高直径は樹幹に沿い地際から 1.2m の位置を、 傾斜地では幹脚が斜面の上部と交る点から、平地 の傾斜木は傾斜した内側の地点から、 根上り木では根と幹の境と考えられる地点からそれぞれ 1.2m の位置を幹軸と直角な面を直径巻尺で(以下各位置の直径はすべて直径巻尺を用いた)測定した。
  - b. 樹高は主幹の頂点から(大径木で枝が分岐して主幹の判定の困難なものは,他の幹よりも太くてか つ長いものを主幹とみなし,他は枝とし)地際までの長さを測定した。
  - c. 材積計算は2m区分のHUBER氏式によるものであるから、地際から2m区分の中央直径を順次に 測定し,最後の位置から梢頭までの長さが 3m 未満となつたらその上は 1m をとり, この点から梢頭 までの長さを測る。更に第1種幹材  $S_1$ (根元より皮付直径20cmまでの幹材),第2種幹材  $S_2$ (皮付直 径 10cm以上20cm未満の幹材), 第3種幹材 S<sub>3</sub>(皮付直径10cm未満の幹材)を区分するため, 材種区 分の境の直径20cm, 10cm の位置を探しこの位置が入る2m区分の中央からの長さと,この中央直径 を測定した。
- ロ・ 枝条材積計算に必要な因子の測定



第1図 調査地位置図

枝条材積も幹材積と同様各枝 を第1種枝条材 B<sub>1</sub>(枝の基部か ら皮付直径20cmまでの枝条材), 第2種枝条材 Bo(皮付直径10cm 以上 20cm未満の枝条材), 第3 種枝条材  $B_3$ (皮付直径10cm未満 の枝条材) と区分し, 幹材と同 じ要領で測定し, また枝の基部 において約5cm未満の小枝は長 さ約1mに切断し,直径約2cm以 上の枝および直径 2cm未満の葉 付小枝と分けそれぞれその重量 を測定し, 更にそれぞれから標 進となる若干の束を選びキシロ メーターで材積を測定し、葉付 小枝は更に葉を除いてキシロメ ーターで測定した。

#### ハ. その他の因子の測定

#### a. 根元部位の周囲の測定

根張りの関係を調査するため 地面より0.3m毎に1.5mまでの 根元部分の直径を測定した。

#### b. 枝下高

樹冠を構成している主要な枝の中で最低位のもの \ 分岐点から地際までの長さを測定した。

#### c. 樹皮の厚さ

2m 区分の中央直径測定と同時に、その位置の樹皮の厚さを測定した。

#### 3. 材積計算の方法

## イ. 幹材積の計算

幹材積は2m区分のHuber 氏区分求積式で算出し、先端は円錐として計算した。すなわち次のとおりである。

いま根元から 1, 3, …… n-1, nm の各位の円面積を  $g_1, g_3,$  ……,  $g_{n-1}, g_n$ 精頭の長さを  $l_1$  とすれば、 全幹材積  $(V)=(g_1+g_3+\dots+g_{n-1})\times 2+\frac{g_n}{3}\times l_1$  次に材種区分の境の直径 20 cm が、地上から 7-9 m の区分材内にあつて、その位置が 2 m 区分の中央 8 m より上にある場合は (8 m よりこの位置までの距離を 4 c とする)、8 m までの材積は

 $(g_1+g_3+\cdots\cdots+g_7)\times 2$  で求め、8m から 上方直径 20cm の位置までの部分の材積は、SMALIAN 氏式を適用して次の式で求める。

$$v = \left(\frac{y_8 + \frac{\pi}{4} \cdot 0.2^2}{2}\right) \times l_2$$

したがつて第1種幹材積は次のようになる。

$$S_1 = \{(g_1 + g_3 + \dots + g_7) \times 2\} + \left(\frac{g_8 + \frac{\pi}{4} \cdot 0.2^2}{2}\right) \times l_2$$

また、直径 20cm の位置が 7—9m 区間の中央より  $1_2$  だけ下にある場合は次式によって求めた。

$$S_1 = \{(g_1 + g_3 + \dots + g_7) \times 2\} - \left(\frac{g_8 + \frac{\pi}{4} \cdot 0.2^2}{2}\right) \times l_2$$

以下 $S_2$ の境の直径10cmの位置が区分求積区間の中央の上,下に応じて同じ要領で材積を計算した。

#### ロ・ 枝条材積の計算

枝の基部直径約5 cm 以上の枝は幹材積と同様な方法で計算し、5 cm 未満の枝条で重量を測つたもの ム材積は、標準束のキシロメーター測定によつて求めた樹種別実材積の重量比により算出した。 なおキシロメーター測定によつて求めた樹種別単位当材積は第3表のとおりである。

| 第3表 | 樹種別枝条の | 1  kg | 当材稿 |
|-----|--------|-------|-----|
|     |        |       |     |

|       |     |      | 1 kg    | 5 坐  | i 材 積   |      | (m³)    |    |            |              |            |      | 1 k     | g    | 当材積       |      | (m <sup>3</sup> ) |
|-------|-----|------|---------|------|---------|------|---------|----|------------|--------------|------------|------|---------|------|-----------|------|-------------------|
| 樹     | 種   | 測定個数 | 小 枝     | 則定関数 | 村枝条     | 則定個数 | 葉除枝条    | 樹  |            |              | 種          | 測定個数 | 小 枝     | 測定個数 | ,<br>葉付枝条 | 測定個数 | 葉除枝条              |
| ブ     | ナ   | 16   | 0.00096 | 15   | 0.00116 | 19   | 0.00093 | ゴ゛ | ン          | ゼ            | ッ          | 2    | 0.00121 | 2    | 0.00131   | 2    | 0.00113           |
| 4     | チ   | 9    | 0.00114 | 7    | 0.00118 | 7    | 0.00107 | ャ  | マハ         | V /          | ノキ         | 4    | 0.00108 | 4    | 0.00119   | 3    | 0.00106           |
| イタヤカニ | ェデ  | 7    | 0.00105 | 7    | 0.00113 | 8    | 0.00099 | ヤ  | 7          | <del>-</del> | ギ          | 1    | 0.00116 | 1    | 0.00133   | 1    | 0.00127           |
| ミ ヅ ナ | ラ   | 4    | 0.00097 | 5    | 0.00108 | 6    | 0.00100 | ゥ  | リハ         | ダカコ          | - デ        | 2    | 0.00110 | 2    | 0.00120   | 2    | 0.00098           |
| コ ナ   | ラ   | 16   | 0.00098 | 16   | 0.00104 | 16   | 0.00095 | 17 | n          | . =          | $\nu$      | 1    | 0.00096 | 1    | 0.00110   | 1    | 0.00100           |
| ホホノ   | キ   | 5    | 0.00110 | 3    | 0.00131 | 11   | 0.00106 | オ  | = 4        | <b>ブ</b> ル   | ξ          | 1    | 0.00112 | 1    | 0.00135   | 2    | 0.00110           |
| ケヤ    | 丰   | 10   | 0.00096 | 5    | 0.00113 | 8    | 0.00089 | ャ  | 7 1        | <b>デ</b> ク   | ラ          | 2    | 0.00095 |      |           | 2    | 0.00097           |
| ŋ     | y   | 11   | 0.00105 | 12   | 0.00110 | 11   | 0.00098 | 1  | ヌ          | ブ            | ナ          | 3    | 0.00092 | 3    | 0.00119   | 3    | 0.00096           |
| クヌ    | ギ   | 9    | 0.00087 | 9    | 0.00100 | 9    | 0.00094 | シ  | ウリ         | ザク           | <b>ゥラ</b>  | 1    | 0.00114 | 3    | 0.00112   | 2    | 0.00105           |
| センノ   | 丰   | 1    | 0.00113 | 4    | 0.00106 | 2    | 0.00098 | 7  | +          | ナ            | À.         | 3    | 0.00105 | 3    | 0.00126   | 2    | 0.00100           |
| カッ    | ラ   | 2    | 0.00104 | 5    | 0.00107 | 2    | 0.00096 | シ  |            |              | デ          | 2    | 0.00110 | 2    | 0.00119   | 2    | 0.00096           |
| ヤチダ   | モ   | 3    | 0.00105 | 5    | 0.00113 | 5    | 0.00100 | ャ  | チ          | 25           | ン          | 2    | 0.00105 | 2    | 0.00111   | 2    | 0.00097           |
| ミ ヅ   | 丰   | 8    | 0.00099 |      |         | 8    | 0.00097 | 25 | ウチリ        | フカコ          | c デ        | 5    | 0.00100 | 5    | 0.00116   | 2    | 0.00101           |
| キ ハ   | Ą"  |      |         | 1    | 0.00125 | 1    | 0.00119 | 才  | ノオロ        | レカン          | /バ         | 2    | 0.00095 | 1    | 0.00102   | 2    | 0.00094           |
| オヒョウニ | = レ | 1    | 0.00106 | 1    | 0.00113 | 1    | 0.00100 | =  | 7          | げ            | 丰          | 1    | 0.00119 | 1    | 0.00140   | 1    | 0.00140           |
| ハピ    | ㅁ   |      |         |      |         | 1    | 0.00103 | エ  | <b>⊐</b> * | 1            | 牛          |      |         |      |           | 2    | 0.00109           |
| アヅキナ  | ・シ  | 1    | 0.00099 | 3    | 0.00118 | 1    | 0.00090 | ŧ  |            | €            | ヂ          |      |         | 1    | 0.00102   | 3    | 0.00099           |
| ヤマナラ  | シ   | 1    | 0.00118 | 2    | 0.00123 | 2    | 0.00106 | 7  | オ          | ^            | <b>A</b> , |      |         | 1    | 0.00110   | 1    | 0.00100           |
| ર જ   | ×   | 4    | 0.00095 | 2    | 0.00105 | 4    | 0.00104 | サ  | ル          | グル           | 3          | 1    | 0.00130 | 4    | 0.00130   | 5    | 0.00126           |
| シナノ   | キ   |      |         | 1    | 0.00126 | 4    | 0.00114 |    |            |              |            |      |         |      |           |      |                   |

摘 要 1. 小枝は直径約5cm 未満,2cm 以上の木質部

- 2. 葉付枝条は直径約 2cm 未満の葉付枝条
- 3. 葉除枝条は同上の葉をとつたもの
- 4. 薬除き枝条が薬付枝条の測定数より多い分は落薬後の測定のためである。

## 4. 資料の內容

イ. 直径階別樹高階別本数分配表

(折込第4表参照)

中. 営林署別直径級別本数一覧表

第 5 表

|   |    |    | A2 C         |     |      |             |                     |                     |                     |                     |                     |                     |             |                     |                |
|---|----|----|--------------|-----|------|-------------|---------------------|---------------------|---------------------|---------------------|---------------------|---------------------|-------------|---------------------|----------------|
| À | 1  | 営材 | <b>√</b> 92. | 総   | 数    |             |                     | 萌                   |                     | 級                   | 別                   | 本                   | 数           |                     |                |
|   | Γ, | 四个 | 个百           | RON | 奴    | 4 ~<br>10cm | 12 <b>∼</b><br>20cm | 22 <b>∼</b><br>30cm | 32 <b>∼</b><br>40cm | 42 <b>∼</b><br>50cm | 52 <b>~</b><br>60cm | 62 <b>~</b><br>70cm | 72~<br>80cm | 82 <b>∼</b><br>90cm | 92 <b>~c</b> m |
| 青 | 森  | 蟹  | 田            |     | 44   | 3           | 10                  | 14                  | 8                   | 8                   | _                   | _                   | 1           | _                   |                |
|   |    | 深  | 浦            |     | 120  | 15          | 19                  | 13                  | 16                  | 14                  | 23                  | 8                   | 5           | 3                   | 4              |
|   |    | 弘  | 前            |     | 14   | -           | 2                   | 6                   | 3                   | 1                   | _                   | _                   | _           | 2                   |                |
|   |    | 黒  | 石            |     | 28   | 2           | 12                  | 10                  | 3                   | 1                   | –                   |                     | _           | _                   |                |
|   |    | 大  | 畑            |     | 58   | 7           | 15                  | 13                  | 10                  | 4                   | 6                   | 2                   | _           | _                   | 1              |
|   |    | 三才 | 太太           |     | 47   | 13          | 11                  | 7                   | 3                   | 3                   | 4                   |                     | 2           | 2                   | 2              |
|   |    | 三  | 戸            |     | 136  | 16          | 18                  | 23                  | . 23                | 14                  | 13                  | 9                   | 11          | 8                   | 1              |
| 小 | 計  |    |              |     | 447  | 56          | 87                  | 86                  | 66                  | 45                  | 46                  | 19                  | 19          | 15                  | 8              |
| 岩 | 手  | 田  | Щ            |     | 243  | 30          | 39                  | 35                  | 35                  | 37                  | 31                  | 17                  | 12          | 5                   | 2              |
|   |    | 盛  | 岡            |     | 107  | 14          | 15                  | 10                  | 16                  | 13                  | 18                  | 10                  | 8           | 3                   | _              |
|   |    | 雫  | 石            |     | 25   | _           | 8                   | 14                  | 3                   | _                   | _                   | _                   |             | _                   | -              |
|   |    | 北  | 上            |     | 96   | 7           | 11                  | 14                  | 13                  | 18                  | 18                  | 10                  | 5           | _                   |                |
|   |    | Л  | 尻            | ĺ   | 138  | 9           | 15                  | 20                  | 19                  | 14                  | 11                  | 13                  | 15          | 10                  | 12             |
|   |    | 水  | 沢            |     | 112  | 6           | 22                  | 27                  | 13                  | 7                   | 14                  | 9                   | 8           | 3                   | 3              |
|   |    |    | 関            |     | 38   | 7           | 21                  | . 9                 | 1                   | _                   | _                   |                     | _           | _                   | ·              |
|   |    | 久  | 慈            | i   | 15   | 1           | 4                   | 3                   | 5                   | 2                   | _                   |                     | -           |                     | _              |
|   |    | 岩  | 泉            |     | 126  | 26          | 18                  | 21                  | 28                  | 18                  | 10                  | 3                   |             | 1                   | 1              |
|   |    | Л  | 井            |     | 75   | 22          | 26                  | 7                   | 10                  | 2                   | 2                   | 4                   | 1           | _                   | 1              |
|   |    | 宮  | 古            | ł   | 38   | 3           | 8                   | 11                  | 8                   | 6                   | 2                   | _                   | _           | _                   |                |
|   |    | 遠  | 野            |     | 230  | 32          | 29                  | 15                  | 21                  | 37                  | 41                  | 27                  | 16          | 10                  | 2              |
|   |    | 大  | 槌            |     | 48   | 10          | 21                  | 10                  | 7                   | _                   | _                   | _                   | _           | _                   | _              |
|   |    | 大船 | 沿渡           |     | 18   | 3           | 8                   | 6                   | 1                   | . –                 | <u> </u>            | _                   | _           | _                   |                |
| 小 | 計  |    |              | 1,  | ,309 | 170         | 245                 | 202                 | 180                 | 154                 | 147                 | 93                  | 65          | 32                  | 21             |
| 宫 | 城  | 石  | 巻            |     | 123  | 41          | 66                  | 14                  | 1                   | _                   | 1                   | _                   | _           | _                   |                |
|   |    | 古  | Щ            |     | 125  | 27          | 44                  | 20                  | 8                   | 12                  | 5                   | 4                   | 3           | _                   | 2              |
|   |    | 中第 | 折田           |     | 33   | 8           | 5                   | 7                   | 5                   | 3                   | 5                   | _                   | _           | _                   |                |
|   |    | 仙  | 台            |     | 80   | 2           | 3                   | 1                   |                     | 14                  | 14                  | 9                   | 10          | 5                   | 6              |
|   |    | 白  | 石            |     | 160  | 29          | 62                  |                     | 1                   |                     | i                   | 3                   | -           | -                   |                |
| 小 | 計  |    |              |     | 521  | 107         | 180                 | 77                  | 37                  | 43                  | 35                  | 16                  | 13          | 5                   | 8              |
| ā | +  |    |              | 2,  | ,277 | 333         | 512                 | 365                 | 283                 | 242                 | 228                 | 128                 | 97          | 52                  | 37             |

## ハ. 樹種別直径級別本数一覧表

第 6 表

|                                                                                    |           |   |                                 | .,                        |                           | 直                          | 径                         | 級                    | 別                         |                     | 数                     |                       |                  |
|------------------------------------------------------------------------------------|-----------|---|---------------------------------|---------------------------|---------------------------|----------------------------|---------------------------|----------------------|---------------------------|---------------------|-----------------------|-----------------------|------------------|
| 樹                                                                                  | 種         | 総 | 数                               | 4 ~<br>10cm               | 12∼<br>20cm               | 22 <b>∼</b><br>30cm        | 32 <b>∼</b><br>40cm       | 42 <b>∼</b><br>50cm  | 52~<br>60cm               | 62~<br>70cm         | 72 <b>∼</b><br>  80cm | 82 <b>∼</b><br>  90cm | 90~cm            |
| oブ<br>o ミ ヅ ナ<br>o イ タ ヤ カ<br>o ト                                                  | ナラデエデラ    |   | 675<br>256<br>125<br>157<br>127 | 61<br>28<br>25<br>9<br>37 | 82<br>40<br>25<br>8<br>65 | 88<br>39<br>18<br>23<br>21 | 90<br>37<br>16<br>20<br>2 | 90<br>34<br>19<br>17 | 89<br>37<br>11<br>32<br>1 | 65<br>22<br>6<br>17 | 12<br>4               | 5<br>1                |                  |
| o ク<br>△セ ソ ノ<br>oケ ヤ<br>△ホ ホ ノ<br>△サ ワ グ )                                        | リキキキミ     |   | 96<br>62<br>58<br>127<br>116    | 17<br>5<br>13<br>19<br>13 | 44<br>3<br>20<br>32<br>26 | 23<br>7<br>10<br>38<br>18  | 12<br>12<br>8<br>26<br>9  | 13<br>3<br>9<br>30   | 2                         | 7<br>-<br>1<br>3    | _                     |                       | -<br>-<br>-<br>- |
| △カ ッ<br>△ク ヌ<br>△ヤ チ ダ<br>△ハ ル ニ<br>△シウ リザ                                         | $\nu$     |   | 55<br>33<br>35<br>25<br>19      | 5<br>7<br>3<br>4<br>1     | 7<br>18<br>4<br>15<br>9   | 9<br>8<br>4<br>3<br>6      | 9<br><br>5<br>2<br>1      | 4<br>-7<br>-2        | 10<br><br>7<br>           | 4<br>1<br>—         | _                     | 3<br>1<br>—           | 3<br><br><br>    |
| △ゴ ン ゼ<br>△オヒョウ<br>△ウリハダカ<br>△ヤ チ ハ<br>△ア サ                                        | ニ レ<br>エデ |   | 13<br>10<br>8<br>5<br>10        | 1<br>-<br>1<br>1<br>2     | 8<br><br>6<br>3<br>5      | 3<br>4<br>1<br>—           | 1<br>1<br>—<br>1          | 1<br>-<br>1          | 4<br>-<br>-               | · =                 |                       | =                     |                  |
| oイ ヌ ブ<br>oア ヅ キ ヮ<br>oシ ラ カ<br>oミ ヅ<br>oヤ マ ザ :                                   |           |   | 27<br>23<br>20<br>19            | 11<br>6<br>9<br>—<br>6    | 4                         | 4<br>8<br>3<br>1<br>4      | 3<br>1<br>-<br>3<br>3     | 1<br>-<br>5<br>-     | 2<br><br>4<br>            |                     | <br> -<br> -          | _                     | _<br>_<br>_<br>_ |
| <ul><li>・シ ナ ノ</li><li>・ヤマハン</li><li>・オノオレカ</li><li>・ウダイカ</li><li>・ア オ ハ</li></ul> | ンバンバ      |   | 11<br>9<br>5<br>5<br>4          | 5<br><br><br>2            | 4<br>3<br>1<br>—<br>2     | 2<br>-<br>2                | 1<br>3<br>3<br>-          | 1<br>1<br>-<br>-     | 1<br>                     | _<br>_<br>_<br>_    |                       |                       | -<br>-<br>-      |
| △ニ ガ                                                                               |           |   | 2<br>3<br>20<br>20<br>19        | 1<br>10<br>4<br>9         | 1<br>1<br>9<br>6<br>6     | <br><br>4<br>              | .1<br>-<br>1<br>4<br>4    | 1<br>-<br>2<br>-     | <br> -<br> -              | _<br>_<br>_<br>_    | -                     |                       |                  |
| oシ<br>oア オ ダ<br>oハクウン<br>oヤ ナ<br>oナ ナ カ っ                                          | ボクギ       |   | 16<br>8<br>7<br>4<br>4          | 8<br>2<br>3<br>—          | 8<br>3<br>2<br>4<br>1     | `                          | 1<br>-<br>-               | -<br>-<br>-<br>-     | <br><br>                  | <br><br>            |                       |                       | _<br>_<br>_<br>_ |
| oオ ニ グ ノ<br>oエ ゴ ノ<br>oヤ マ ウ ノ<br>oア ワ ブ<br>oド                                     | キ         |   | 3<br>3<br>1<br>1<br>1           |                           | 2<br>1<br>—               | 1<br>-<br>-<br>1           |                           | <br> -<br> -         |                           | =                   | <br>                  |                       | _<br>_<br>_<br>_ |
| △ト ネ リ<br>△キ ハ<br>△ヤ マ ナ ラ<br>○タ カ ノ ジ<br>・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・      | コダラシメ     |   | 1<br>3<br>5<br>1                | _<br>_1<br>_              | 3<br>3<br>1               | 1<br>1                     | =                         |                      | -<br>  -<br>  -           | - =                 |                       |                       |                  |
| 計                                                                                  |           | 2 | ,277                            | 333                       | 512                       | 365                        | 283                       | 242                  | 228                       | 128                 | 97                    | 52                    | 37               |

摘 要 のは、ブナ群

△は、サワグルミ群

- 直径階別樹高階別平均材積 付表第2表のとおりである。

#### ■ 材積表作成の方法

#### 1. 材稿表作成方法の決定

#### イ・樹種の区分

従来青森営林局では、広葉樹は全木材積表を使用していたが今回幹材積表を作成するにあたつて、これ等の樹型の多様な樹種をいかにとりあつかえば合理的にそれぞれの樹型に応じた材積表ができるかが問題である。もちろん材積表としては各樹に合致したものは作成できないから現段階では実用性があり、類似の多数の樹の実材積からの誤差が比較的小さいもので満足せざるをえない。

現在作成されてある材積表のうち 広葉樹の樹種ごとの材積表は少なく 本邦樹種のうち 単一樹種の 材積表では、 清野博士のブナ単木材積表<sup>3)</sup>、中島博士北海道立木材積表<sup>4)</sup>、寺崎博士のシラカシ、ブナ、クリの単木材積表<sup>5)</sup>等がある。これ等の材積表のうち清野博士のブナ単木材積表は、地上より皮付直径 7cm 以上の材積を幹材積としており、現在の幹材積の定義と異なり、また中島博士の北海道立木材積表は、樹型(特に樹高)の類似したものを分類し直径のみの函数として材積を表わしたものである。

この材積表の作成にあたつては、樹種ごとに表を作成することは到底不可能なので使用の便を考慮して比較的客観的な樹型をもととして考究して見た。

樹型について近藤氏のは,広葉樹の樹型を二種に分類しており,樹種の代表的な型があるとしても立地的関係あるいは風衝等によつて型が変ることが予想されるといわれており,広葉樹の樹型は多様で樹種,生育条件,施業法によつて種々な型を形成し,同一の樹種であつても,年令,立地条件によつて型を異にするのでたとえ類似の型を多く分類しても材積表としての価値があまり期待できないと考えられるので,外観的に樹種の個性上比較的幹が通直で主幹が認められ易いもの(サワグルミ群,第6表の△を付した樹種)と,主幹が判然としないもの(プナ群,第6表の○を付した樹種)とに分類して検討した。

樹種群別の直径級別本数は第7表のとおりである。

| khi |    | £#F |   |      |            | 直           | 往           | <u> </u> | 級           | 別   | 本   | 娄  | <b>Ý</b>    |    |            |
|-----|----|-----|---|------|------------|-------------|-------------|----------|-------------|-----|-----|----|-------------|----|------------|
| 樹   |    | 種   | 総 | 数    | cm<br>4—10 | cm<br>12—20 | cm<br>22—30 |          | cm<br>42—50 |     |     |    | cm<br>82—90 |    | cm<br>100— |
| ブ   | ナ  | 群   | 1 | ,748 | 270        | 369         | 260         | 215      | 174         | 182 | 112 | 84 | 47          | 20 | 14         |
| サワ  | グル | ぇ群  |   | 529  | 63         | 143         | 105         | 68       | 67          | 46  | 16  | 13 | 5           | 1  | 2          |

第7表 樹種群別直径級別本数

#### ロ・実験式の適用

材積表の作成方法として実験式により直接材積を推定する方法、形数法、細りを利用する方法等が、従来 行われている。

この材積表作成では種々の方法について考究する時間を持たなかつたので従来広く用いられている実験式によって直接材積を推定する方法を採用した。

実験式としては、多くの研究があるが、山本博士<sup>の</sup>が一般的材積表の作成に使用された次の材積式について試みた。

$$V=aD^{b_1}H^{b_2}$$

(1)

ただし,

V: 幹材積 (m³), D: 胸高直径 (cm), H: 樹高 (m), a, b1, b2: 常数

(1) 式の対数をとれば次の式に変形される。

$$\log V = \log a + b_1 \log D + b_2 \log H \tag{2}$$

(1) 式が広葉樹の幹材積を胸高直径と樹高によって推定する場合の推定式として充分であるか否かは、各 資料についてそれぞれ  $\log V \ge \log D$ ,  $\log V \ge \log H$  が直線関係になければならない。

今2,277 本の資料を両対数方眼紙の横軸に、胸高直径または樹高をとり、これに対応する幹材積を縦軸にとりプロットすれば、第2図、第3図のとおりほぼ直線関係であり、本式によつて差支えないことが明らかである。

なお、この材積式を用い山本博士がアカマッ幹材積表 $^{\eta}$ 、清野博士がブナの単木材積表 $^{\eta}$ 、麻生氏がカラマッ幹材積表 $^{\eta}$ 、植杉氏がアカマッ幹材積表 $^{\eta}$ をそれぞれ作成されている。

#### ハ. 実験式の計算

今  $\log V = V$ ,  $\log a = a$ ,  $\log D = X_1$ ,  $\log H = X_2$  とすれば(2)式は次のように書き換えられる。

$$Y = a + b_1 X_1 + b_2 X_2 \tag{3}$$

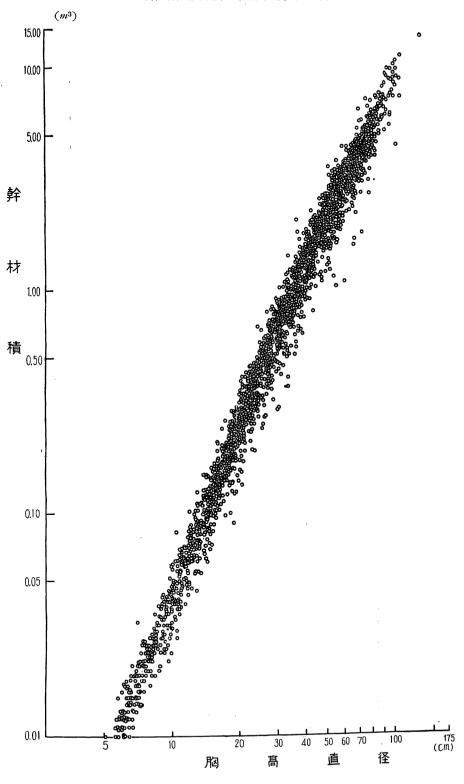
全資料について胸高直径、樹高、材積の測定値の対数を 4 桁まで求め樹種群別に各因子ごとの和、平方和、積和を計算すれば次のとおりである。(ただし、材積の対数は  $V \times 1000$  の 4 桁の対数を用いた)

| 区    | 分   | 本数(n) | $SX_1$     | $SX_2$     | SY         | $SX_{1}^{2}$   | $SX_2^2$       |
|------|-----|-------|------------|------------|------------|----------------|----------------|
| ブナ   | 群   | 1,748 | 2,498.8526 | 2,179.5784 | 4,610.1299 | 3,778.47566272 | 2,776.62970436 |
| サワグル | ・ミ群 | 529   | 738.4972   | 666.3258   | 1,369.9012 | 1,077.27130820 | 855.55396585   |

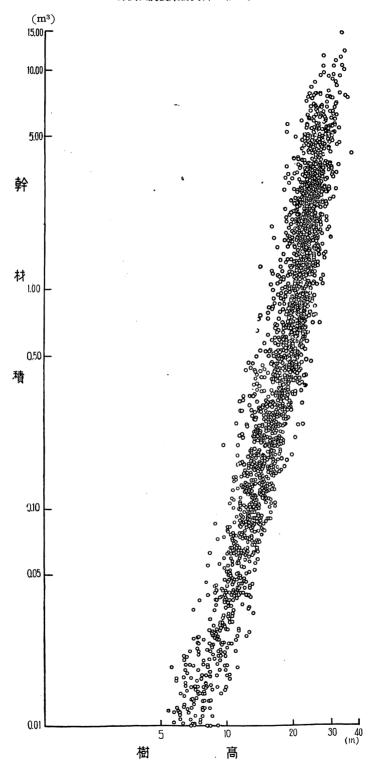
| $SY^2$          | $SX_1X_2$      | SX <sub>1</sub> Y | $SX_2Y$        |
|-----------------|----------------|-------------------|----------------|
| 13,321.35675211 | 3,217.85411721 | 7,076.97230149    | 5,997.96541899 |
| 3,822.68720468  | 955.36176923   | 2,024.44560770    | 1,788,96831530 |

#### 上記の値より平方和, 積和を計算すれば

| 区   | 分   | $Sx_1^2$     | $Sx_2^2$    | $Sy^2$         | $Sx_1x_2$    | $Sx_1y$      | $Sx_2y$      |
|-----|-----|--------------|-------------|----------------|--------------|--------------|--------------|
| ブナ  | 群   | 206.24207203 | 58.91688872 | 1,162.71962690 | 102.03881301 | 486.56321285 | 249.60183133 |
| サワグ | ルミ群 | 46.31078947  | 16.25326312 | 275.18380627   | 25.15432577  | 112.02934971 | 63.44749675  |


$$Sx_1^2 = SX_1^2 - (SX_1)^2/n$$
  $Sx_2^2 = SX_2^2 - (SX_2)^2/n$ ,

 $Sy^2 = SY^2 - (SY)^2/n$ ,  $Sx_1x_2 = SX_1X_2 - (SX_1)(SX_2)/n$ ,


 $Sx_1y = SX_1Y - (SX_1)(SY)/n$ ,  $Sx_2y = SX_2Y - (SX_2)(SY)/n$ ,

以上の値から回帰係数も、なを求めると、

| 区 分    | <i>b</i> <sub>1</sub> | $b_2$      |
|--------|-----------------------|------------|
| ブ・ナー群  | 1.83839081            | 1.05223494 |
| サワグルミ群 | 1.87446682            | 1.00266409 |



第 2 図 胸高直径に対する幹材積の関係



第 3 図 樹高に対する幹材積の関係

したがつて Y の推定式 (材積方程式) は次のとおりになる。

$$\hat{Y} = \bar{Y} + b_1(X_1 - \bar{X}_1) + b_2(X_2 - \bar{X}_2) \tag{6}$$

ブ ナ 群  $\hat{\mathbf{Y}} = -1.30272672 + 1.83839081X_1 + 1.05223494X_2$ 

(6)**′** 

サワグルミ群  $\hat{Y}=-1.29014792+1.87446682X_1+1.00266409X_2$ 

(6)"

次に回帰に帰因する平方和, $(S\hat{y}^2)$ ,回帰からの偏差の平方和 $(Sd_{y\cdot x_1x_2^2})$ ,推定誤差の分散 $(S_{y\cdot x_1x_2^2})$  および標準誤差 $(S_{y\cdot x_1x_2})$ ,重相関係数(R) をそれぞれ求めると

| 区  | :   | 分 | $S\hat{y}^2 \qquad Sdy \cdot x_1 x_2^2$ |            | $s_{y \cdot x_1 x_2^2}$ | Sy · x 1 x 2 | R          |
|----|-----|---|-----------------------------------------|------------|-------------------------|--------------|------------|
| ブ  | ナ   | 群 | 1,157.13310706                          | 5.58651984 | 0.00320144              | 0.05658134   | 0.99759645 |
| サワ | グルミ | 群 | 273.61182552                            | 1.57198075 | 0.00298856              | 0.05466769   | 0.99714233 |

$$\begin{array}{lll} & Sy^2 = b_1 Sx_1 y + b_2 Sx_2 y, & Sdy \cdot x_1 x_2^2 = Sy^2 - S\hat{y}^2, & s_y \cdot_{x_1 x_2^2} = Sdy \cdot x_1 x_2^2 / n - 3, \\ & s_y \cdot_{x_1 x_2} = \sqrt{s_y \cdot_{x_1 x_2^2}}, & R = \sqrt{S\hat{y}^2 / Sy^2}, \end{array}$$

#### ニ・資料の吟味

ブナ群,サワグルミ群別の幹材積の推定値は、それぞれ(6)<sup>1</sup>、(6)<sup>1</sup>によつて求められるが、この推定式によつて求められる値は、資料に異常な標本の測定値または計算誤差による異常値があれば、かたよりを生ずるのでこれ等の異常値を次の方法で棄却した。

すなわち、実験式を一次に変換した(6)′(6)″式により推定される値が回帰平面からの変動を考慮し有意 水進95%を越える資料を次の式によつて計算する。

$$y' = t \times \left[ s_{y \cdot x_{1} x_{2}^{2}} \left\{ 1 - \frac{1}{n} - |c| \right\} \right]^{\frac{1}{2}}$$

$$\epsilon = \left[ (X_{1} - \bar{X}_{1})(X_{2} - \bar{X}_{2}) \right] \left[ c_{11} c_{12} c_{22} \right] \left[ (X_{1} - \bar{X}_{1}) (X_{2} - \bar{X}_{2}) \right]$$

$$= \left[ c_{11}(X_{1} - \bar{X}_{1})^{2} + c_{22}(X_{2} - \bar{X}_{2})^{2} + 2c_{12}(X_{1} - \bar{X}_{1})(X_{2} - \bar{X}_{2}) \right]$$

ただし y'; 棄却限界の値

c11, c12, c22; c 乗数

 $\bar{X}_1$ ,  $\bar{X}_2$ ;  $X_1$ ,  $X_2$ の平均値

ル; 資料の数

t; Student の t 分布の t の値

(6)', (6)'' 式によつて 各資料について推定値および y' を計算し、 $(Y-\hat{Y})$  の絶対値が y' より 大となる 資料を棄却する。すなわち除かれた資料は第8表に表示したとおりで、ブナ群では 67 本、サワグルミ群では 26 本除かれた。

#### ホ. 樹種群間の材積式の比較

#### a. 棄却後の材積式の計算

上記によつて乗却された資料を除いて樹種群ごとに材積式を計算すれば次のとおりである。なお,乗却後の直径階樹高階別平均材積は,付表3のとおりである。

## 材積表調製業務資料 第1号

第8表(1) 棄却木の内容 ブナ群 (67本)

| 直<br><i>D</i> | 樹高       | 幹材積    | 同対数<br>logV(Y) | 計算值  <br>logV' (Ŷ) | 経営区 | 林小班                | 番号  | 樹 種    |
|---------------|----------|--------|----------------|--------------------|-----|--------------------|-----|--------|
| cm<br>3.6     | m<br>4.0 | 0.0030 | 0.4771         | 0.3535             | 十和田 | 861.               | 36  | ブ・ナ    |
| 4.1           | 5.1      | 0.0052 | 0.7160         | 0.5684             | 田山  | 10132              | 121 | ミヅナラ   |
| 4.2           | 5.2      | 0.0053 | 0.7243         | 0.5964             | 三戸  | 10,                | 53  | ハウチワ   |
| 4.9           | 6.0      | 0.0090 | 0.9542         | 0.7850             | 姫 神 | 333,               | 14  | ミヅナラ   |
| 5.1           | 7.4      | 0.0061 | 0.7853         | 0.9127             | 田山  | 10132              | 165 | "      |
| 5.8           | 6.2      | 0.0114 | 1.0569         | 0.9345             | 姫 神 | 2831,              | 21  | イタヤ    |
| 6.5           | 7.9      | 0.0068 | 0.8325         | 1.1362             | "   | "                  | 24  | トチ     |
| 6.9           | 5.7      | 0.0186 | 1.2695         | 1.0347             | 三戸  | 10 Ն               | 93  | 1 タヤ   |
| 7.6           | 8.8      | 0.0274 | 1.4378         | 1.3104             | 栗 駒 | 51 <sub>k</sub> 2  | 44  | ミヅナラ   |
| 10.1          | 11.9     | 0.0305 | 1.4843         | 1.6752             | 三 戸 | 10,                | 88  | トチ     |
| 10.5          | 13.2     | 0.0827 | 1.9175         | 1.7538             | 遠野  | 46vこ               | 78  | ミヅキ    |
| 10.6          | 9.8      | 0.0300 | 1.4771         | 1.6251             | 深浦  | 78 <sub>6</sub> .  | 60  | イタヤ    |
| 15.9          | 13.5     | 0.0958 | 1.9814         | 2.0953             | 石 巻 | 56ろ                | 50  | ミヅキ    |
| 18.5          | 12.7     | 0.1010 | 2.0043         | 2.1883             | 本 内 | 27vz               | 90  | シナノキ   |
| 18.6          | 14.7     | 0.1376 | 2.1386         | 2.2594             | 釜 石 | 61 L v1            | 11  | ケヤキ    |
| 19.2          | 12.2     | 0.0918 | 1.9628         | 2.1996             | 白 石 | 107/z              | 43  | ヤマハンノキ |
| 19.5          | 13.4     | 0.1243 | 2.0945         | 2.2548             | 遠野  | 46VZ               | 75  | ヤナギ    |
| 21.0          | 16.5     | 0.1540 | 2.1875         | 2.4091             | 栗 駒 | 51&2               | 71  | コ ナ ラ  |
| 23.8          | 18.0     | 0.2658 | 2.4246         | 2.5489             | 水 沢 | 83ろ                | 35  | ブ ナ    |
| 24.0          | 12.4     | 0.3214 | 2.5070         | 2.3851             | 三 戸 | 10,                | 100 | ナナカマド  |
| 26.0          | 20.7     | 0.3375 | 2.5282         | 2.6833             | 姫 神 | 283, \             | 28  | 1 タヤ   |
| 29.3          | 21.1     | 0.8289 | 2.9185         | 2.7875             | 久 慈 | 561 v <sub>3</sub> | 12  | ミヅナラ   |
| 30.6          | 18.4     | 0.3212 | 2.5068         | 2.7594             | 黒 石 | 3212               | 28  | "      |
| 31.0          | 23.0     | 0.2989 | 2.4755         | 2.8719             | 姫 神 | 2831,              | 59  | ブ ナ    |
| 31.8          | 18.2     | 0.4682 | 2.6704         | 2.7852             | 栗 駒 | 511                | 55  | ケヤキ    |
| 34.1          | 16.0     | 0.4117 | 2.6146         | 2.7821             | 目 屋 | 8 ŋ                | 14  | ト チ    |
| 33.7          | 20.1     | 0.5404 | 2.7327         | 2.8769             | 田山  | 101 <sub>ろ2</sub>  | 125 | "      |
| 34.0          | 22.6     | 0.3731 | 2.5718         | 2.9376             | 深浦  | 78 <sub>1</sub> ,  | 92  | 1 タヤ   |
| 34.5          | 17.5     | 0.5176 | 2.7140         | 2.8323             | 栗 駒 | 51kQ               | 85  | ヤマザクラ  |
| 37.0          | 16.3     | 0.5200 | 2.7160         | 2.8557             | 釜 石 | 61 <sub>1,1</sub>  | 1   | ケヤキ    |
| 37.2          | 17.3     | 0.3945 | 2.7742         | 2.8871             | "   | 64 L v 1           | 18  | g y    |
| 37.9          | 23.4     | 2.0844 | 3.3190         | 3.0401             | 遠 野 | 976.               | 9   | ミヅナラ   |
| 38.8          | 20.2     | 0.6748 | 2.8292         | 2.9917             | 目屋  | 89                 | 6   | トチ     |
| 41.2          | 22.4     | 0.9262 | 2.9667         | 3.0868             | 田山田 | 96،                | 6   | "      |

| 直径         | 樹高田       | 幹材積                      | 同対数<br>logV(Y) | 計算値<br>logV'(Ŷ) | 経営区 | 林小班               | 番号  | 樹種   |
|------------|-----------|--------------------------|----------------|-----------------|-----|-------------------|-----|------|
| cm<br>44.5 | m<br>20.4 | m <sup>3</sup><br>0.8210 | 2.9143         | 3.1057          | 宮古  | 7012              | 26  | ミッキ  |
| 47.2       | 24.7      | 1.3446                   | 3.1286         | 3.2400          | 田山  | 961               | 16  | ブ ナ  |
| 47.8       | 22.3      | 1.1728                   | 3.0692         | 3.2034          | 久 慈 | 56i, 13           | 7   | ミヅナラ |
| 48.0       | 25.7      | 2.4465                   | 3.3885         | 3.2715          | 岩 崎 | 66,               | 49  | ブナ   |
| 48.2       | 24.6      | 1.2168                   | 3.0852         | 3.2548          | 田山  | 101み <sub>2</sub> | 140 | 1 タヤ |
| 49.3       | 24.9      | 1.4061                   | 3.1480         | 3.2784          | 本 内 | 27∤⊂              | 72  | ブナ   |
| 49.8       | 26.8      | 2.7379                   | 3.4374         | 3.3201          | 三 戸 | 10 է ւ            | 150 | "    |
| 51.3       | 25.8      | 1.2171                   | 3.0853         | 3.3264          | 岳山  | 296.              | 42  | "    |
| 53.5       | 22.1      | 2.7112                   | 3.4332         | 3.2894          | 十和田 | 861,              | 5   | トチ   |
| 55.3       | 17.0      | 1.1623                   | 3.0653         | 3.1957          | 三 戸 | 10 է ւ            | 92  | ブ ナ  |
| 56.9       | 32.2      | 2.4384                   | 3.3871         | 3:5105          | 本 内 | 27kZ              | 58  | "    |
| 57.0       | 26.0      | 2.0052                   | 3.3022         | 3.4142          | 田山  | 96،               | 26  | "    |
| 57.8       | 25.7      | 1.9720                   | 3.2949         | 3.4199          | "   | 101ろ2             | 89  | ミヅナラ |
| 57.8       | 26.0      | 3.4588                   | 3.5389         | 3.4252          | 遠野  | 97 <sub>6</sub> v | 3   | ブナ   |
| 59.4       | 23.3      | 1.8732                   | 3.2726         | 3.3970          | 田山  | 101ろ2             | 63  | イタヤ  |
| 61.8       | 19.2      | 1.0978                   | 3.0405         | 3.3402          | 三 戸 | 10، ا             | 35  | ブナ   |
| 63.8       | 26.4      | 4.2068                   | 3.6280         | 3.5111          | 遠野  | 46kこ              | 29  | "    |
| 66.8       | 24.4      | 2.4698                   | 3.3927         | 3.5118          | "   | "                 | 23  | ミネバリ |
| 67.3       | 24.9      | 2.4391                   | 3.3872         | 3.5270          | 三戸  | 10 Ն ֊            | 146 | ミヅナラ |
| 68.2       | 26.1      | 2.6024                   | 3.4154         | 3.5591          | "   | "                 | 147 | イタヤ  |
| 69.0       | 33.4      | 3.3401                   | 3.5238         | 3.6810          | 本 内 | 27VC              | 13  | トチ   |
| 69.0       | 24.9      | 2.7029                   | 3.4318         | 3.5468          | 田山  | 101ろ2             | 178 | イタヤ  |
| 70.6       | 27.0      | 5.2414                   | 3.2414         | 3.6022          | 水 沢 | 82ろ               | 31  | ブ ナ  |
| 74.7       | 26.0      | 1.8204                   | 3.2602         | 3.6300          | 蟹田  | 5512              | 5   | イタヤ  |
| 74.8       | 38.6      | 4.0716                   | 3.6098         | 3.8117          | 姫 神 | 2831,             | 98  | ミヅナラ |
| 77.5       | 26.6      | 3.3574                   | 3.5260         | 3.6699          | 岳山  | 291.              | 39  | "    |
| 80.8       | 20.0      | 5.5272                   | 3.7425         | 3.5728          | 三 戸 | 1000              | 80  | ブ ナ  |
| 83.5       | 26.1      | 4.0428                   | 3.6067         | 3.7207          | 深浦  | 78 <sub>1</sub> , | 28  | "    |
| 83.5       | 31.9      | 4.9014                   | 3.6903         | 3.8124          | 三 戸 | 10 է ւ            | 148 | ミヅナラ |
| 85.0       | 28.3      | 7.6352                   | 3.8828         | 3.7719          | 遠野  | 46kこ              | 21  | ブ ナ  |
| 86.2       | 26.1      | 7.2088                   | 3.8579         | 3.7461          | 十和田 | 861,              | 33  | トチ   |
| 100.0      | 29.4      | 6.3067                   | 3.7998         | 3.9190          | 岳山  | 291.              | 58  | ブナ   |
| 106.2      | 28.6      | 4.6351                   | 3.6661         | 3.9545          | 水沢  | 823               | 5   | ミヅナラ |

第8表(2) 棄却資料の内容 サワグルミ群 (26本)

| 直径        | 樹高田      | 幹材積          | 同対数<br>logV (Y) | 同計算値<br>logV' (Ŷ) | 経営 | 含区 | 林小班               | 番号  | 樹 種   |
|-----------|----------|--------------|-----------------|-------------------|----|----|-------------------|-----|-------|
| cm<br>3.5 | m<br>4.6 | m³<br>0.0036 | 0.5563          | 0.5964            | 深  | 浦  | 78Ն ՝             | 46  | センノキ  |
| 4.0       | 5.0      | 0.0049       | 0.6902          | 0.5393            | 田  | Щ  | 101ろ2             | 62  | ホホノキ  |
| 4.3       | 4.5      | 0.0048       | 0.6812          | 0.5523            | 三  | 戸  | 10 է չ            | 77  | サワグルミ |
| 5.6       | 6.7      | 0.0060       | 0.7782          | 0.9406            | 姫  | 神  | 2831、             | 1   | "     |
| 14.0      | 14.0     | 0.0598       | 1.7767          | 2.0073            | 栗  | 駒  | 51x2              | 81  | ハルニレ  |
| 17.6      | 17.6     | 0.2599       | 2.4148          | 2.2933            | 雫  | 石  | 391,              | 13  | ホホノキ  |
| 21.2      | 17.1     | 0.2500       | 2.4133          | 2.5225            | 栗  | 駒  | 51k2              | 7   | "     |
| 26.2      | 14.0     | 0.2515       | 2.4005          | 2.5176            | 目  | 屋  | 8 9               | 7   | カッラ   |
| 31.0      | 14.8     | 0.6441       | 2.8090          | 2.6788            | 三  | 戸  | 10 է չ            | 69  | "     |
| 32.8      | 20.6     | 0.4632       | 2.6658          | 2.8688            | 門  | 馬  | 715               | 10  | ハルニレ  |
| 33.0      | 17.0     | 0.8289       | 2.9185          | 2.7899            | 三  | 戸  | 10 է չ            | 78  | センノキ  |
| 33.4      | 24.5     | 0.6286       | 2.7984          | 2.9589            | 雫  | 石  | 396,              | 9   | ホホノキ  |
| 35.2      | 26.5     | 0.8280       | 2.9180          | 3.0357            | 姫  | 神  | 2831,             | 64  | "     |
| 36.5      | 21.1     | 0.6884       | 2.8378          | 2.9662            | 門  | 馬  | 713               | 1   | ハルニレ  |
| 38.0      | 27.1     | 1.8281       | 3.2620          | 3.1080            | 姫  | 神  | 283,              | 39  | ヤチダモ  |
| 39.0      | 24.1     | 1.3440       | 3.1284          | 2.9777            | 十種 | 和田 | 86 <sub>6</sub> , | 7   | カッラ   |
| 40.3      | 20.0     | 1.5348       | 3.1861          | 3.0234            | 三  | 戸  | 100,              | 24  | ホホノキ  |
| 40.7      | 22.7     | 0.9460       | 2.9759          | 3.0866            | 田  | Щ  | 10132             | 78  | "     |
| 52.4      | 20.0     | 1.3385       | 3.1266          | 3.2371            | 三  | 戸  | 10 <sub>k</sub> · | 87  | センノキ  |
| 55.3      | 25.8     | 1.8279       | 3.2620          | 3.3918            | 田  | 山  | 10132             | 176 | "     |
| 56.9      | 26.0     | 1.0408       | 3.0174          | 3.4185            | 梁  | 浦  | 78i,              | 64  | カッラ   |
| 64.4      | 33.2     | 2.8176       | 3.4499          | 3.6257            | 本  | 内  | 27VC              | 135 | サワグルミ |
| 72.5      | 30.0     | 6.6700       | 3.8241          | 3.6780            | 門  | 馬  | 441,              | 12  | ヤチダモ  |
| 80.0      | 25.5     | 2.7492       | 3.4392          | 3.6874            | 本  | 内  | 27V               | 119 | サワグルミ |
| 81.2      | 31.5     | 4.7727       | 3.6788          | 3.7916            | 田  | Щ  | 1013              | 189 | センノキ  |
| 85.5      | 25.8     | 4.0465       | 3.6071          | 3.7467            | 目  | 屋  | 8 9               | 3   | カッラ   |

## 平方和, 積和

| X    | 分  | 本 数   | $Sx_1^2$     | $Sx_2^2$    | Sy2            |
|------|----|-------|--------------|-------------|----------------|
| ブナ   | 群  | 1,681 | 195.73151107 | 55.60492882 | 1,107.13628548 |
| サワグル | ミ群 | 503   | 42.04427496  | 14.62949186 | 252.00341261   |

| $Sx_1x_2$   | $Sx_1y$      | $Sx_2y$      |
|-------------|--------------|--------------|
| 96.50994184 | 462.91972881 | 236.71801326 |
| 22.71405546 | 102.27107384 | 57.63644732  |

## 材積式

ブ ナ 群  $\hat{Y}=-1.31267165+1.84455992X_1+1.05565684X_2$ サワグルミ群  $\hat{Y}=-1.31489777+1.88604347X_1+1.01143392X_2$ 

#### 回帰に帰因する平方和等

| 区 分             | 分 $S\hat{y}^2$ $Sdy \cdot x_1x_2^2$ |  | $sy \cdot x_1 x_2^2$ | $sy \cdot x_1x_2$ | R                                       |
|-----------------|-------------------------------------|--|----------------------|-------------------|-----------------------------------------|
| プ ナ 群<br>サワグルミ群 | 1,103.77616781<br>251.18314874      |  |                      |                   | *************************************** |

#### b. 回帰係数の有意性の検定

回帰係数の有意性の検定を行えば次のとおりになる。

| 区分     | 本 数   | $b_1$      | $b_2$      | <i>s</i> <sub>b 1</sub> |
|--------|-------|------------|------------|-------------------------|
| ブ ナ 群  | 1,681 | 1.84455992 | 1.05565684 | 0.00842293              |
| サワグルミ群 | 503   | 1.88604347 | 1.01143392 | 0.01555904              |

| _           | t                  | t                 |
|-------------|--------------------|-------------------|
| Sb 2        | $b_1/s_{b_1}$      | $b_2/s_{b_2}$     |
| 0.0158 0298 | 218.9927**         | 66.8011 <b>**</b> |
| 0.0263 7642 | 121.2185 <b>**</b> | 38.3461**         |
|             |                    |                   |

ただし、 $s_{b_1}$ :  $b_1$ の標準偏差

 $sy \cdot x_1 x_2 \sqrt{c_{11}}$ 

sb 2 ; b2 の標準偏差

 $sy \cdot x_1 x_2 \sqrt{c_{22}}$ 

この表のtの値はいずれもきわめて有意であるので $t_1=0$  および $t_2=0$  という無帰仮説は捨てられる。 したがつてこの材積式を採用してもよいということがわかつた。

#### c. 重相関係数の有意性の検定

念のため重相関係数の検定を行うと次のとおりである。

ブォ群

| 変   | 助 因  | 記   | 号                                  | 自由度<br>(d. f) | 平  | 方     | 和       | 平均平方         |
|-----|------|-----|------------------------------------|---------------|----|-------|---------|--------------|
| 口   | 帰    | , A | <sup>2</sup> 2Sy <sup>2</sup>      | 2             | 1, | 103.7 | 7616781 | 551.88808391 |
| 回帰か | らの偏差 | (1  | $\mathcal{R}^2$ ) $\mathcal{S}y^2$ | 1.678         |    | 3.3   | 6011767 | 0.00200245   |
| 全   | 体    | :   | $Sy^2$                             | 1.680         | 1, | 107.1 | 3628548 |              |
|     |      | !   |                                    | ا · · · · -ا  |    |       |         |              |

$$F = \frac{551.88808391}{0.00200245} = 275,606.424**$$
 df. 2, 1,678

## サワグルミ群

| 变   | 動   | 因   | 記        | 号      | 自由度<br>(d.f) | 平 | 方      | 和       | 平 | 均  | 平   | 方       |
|-----|-----|-----|----------|--------|--------------|---|--------|---------|---|----|-----|---------|
| 回   |     | 帰   | R2.      | $Sy^2$ | 2            |   | 251.18 | 3314874 |   | 12 | 5.5 | 9157437 |
| 回帰カ | 350 | )偏差 | (1-1     | (2)Sy2 | 500          |   | 0.82   | 2026387 |   | (  | 0.0 | 0164053 |
| 全   |     | 体   | S        | $y^2$  | 502          |   | 252.00 | 341261  |   |    |     |         |
|     |     |     | <u>'</u> |        |              |   |        | !       |   |    |     |         |

$$F = \frac{125.59157437}{0.00164053} = 76,555.488**$$
 df. 2, 500

このFの値はいずれも著しく有意で重相関関係は偶然のものでないことが認められる。

なお、相関係数、偏相関係は次のとおりである。

#### 相関係数

| - | 区  |    | 分  | 7.c1.c2    | $\gamma_{y \cdot x_1}$ | 7y·x2      |
|---|----|----|----|------------|------------------------|------------|
| _ | ブ  | ナ  | 群  | 0.92508537 | 0.99443106             |            |
|   | サワ | グル | ※群 | 0.91583012 | 0.99356461             | 0.94924689 |

ただし、胸高直径と樹高の相関係数 ;  $\gamma_{x_1\cdot x_2} = Sx_1x_2/\sqrt{(Sx_1^2)(Sx_2^2)}$ 

胸高直径と幹材積の相関係数 ;  $\gamma_{y:x_1} = Sx_1y/\sqrt{(Sx_1^2)(Sy^2)}$ 

樹高と幹材積の相関係数 ;  $\gamma_{y\cdot x^2} = Sx_2y/\sqrt{(Sx_2^2)(Sy^2)}$ 

#### 偏相関係数

| 区 分    | 7 9 & 1 .  | 7yx2*x1    |
|--------|------------|------------|
| ブェ群    | 0.97409502 | 0.85250372 |
| サワグルミ群 | 0.98344467 | 0.61310050 |

ただし、樹高に対する胸高直径対幹材積の偏相関係数;  $\gamma_{y_{z_1\cdot z_2}} = \frac{\gamma_{y_{z_1}-\gamma_{y_{z_2}}\cdot\gamma_{z_{1,z_2}}}}{\sqrt{(1-\gamma_{y_{z_2}}^2)(1-\gamma_{z_1z_2}^2)}}$ 

胸高直径に対する樹高対幹材積の偏相関係数 :  $\gamma_{y_{x_2 \cdot x_1}} = \frac{\gamma_{y_{x_2} \cdot \gamma_{y_{x_1} \cdot \gamma_{x_1 x_2}}}}{\sqrt{(1 - \gamma_{y_{x_1} \cdot 2})(1 - \gamma_{y_{x_1} x_1}^2)}}$ 

#### d. 樹種群間の回帰係数の有意差の検定

前項で明らかなとおり、二個種群とも材積式はそれぞれ適当であることが分つたが、(IIイ)において 分類した群ごとの差があるかどうかが不明であるので、これらの群において回帰係数がおよび & の差を次 のように検定した。

なお、この関種群の比較は胸高直径 50cm 以上の資料が少なく、一方管内の蓄積も大径級が減少の傾向 にあり、将来の期待経級は中、小にあるので 50cm 以下について比較した。

#### i. 分散の一様性の検定

回帰分析を行うには群間の分散が一様であることが必要であるので、各群ごとの 50cm 以下の資料から推定誤差の分散  $sy \cdot x_1 x_2^2$  を求めF検定を行えば次のとおりである。

平方和, 積和

| 区 分    | 本 数   | $Sx_1^2$     | $Sx_2^2$    | Sy2          |
|--------|-------|--------------|-------------|--------------|
| ブナ群    | 1,248 | 100.11671288 | 37.84757828 | 610.11969298 |
| サワグルミ群 | 428   | 27.35548989  | 11.26822742 | 169.46617189 |

| $Sx_1x_2$   | $Sx_1y$      | $Sx_2y$      |
|-------------|--------------|--------------|
| 56.77692655 | 245.48182849 | 144.97818358 |
| 15.86398552 | 67.51422792  | 41.25455883  |

回帰係数と推定誤差の平均平方

| 区   | 分   | <i>b</i> <sub>1</sub> | $b_2$      | $sy \cdot x_1 x_2^2$ |
|-----|-----|-----------------------|------------|----------------------|
| ブォ  | - 群 | 1.87333789            | 1.02029800 | 0.00187014           |
| サワグ | ルミ群 | 1.87876443            | 1.01611996 | 0.00165473           |

$$F = \frac{0.00187014}{0.00165473} = 1.1302 \qquad d.f \ 1,245, \quad 425$$

このFの値は $F_{0.025}$ =1.14 より小さいので、二群の分散は一様とみなされる。

- ii. 樹種群間の回帰係数の差の検定
- (i) によつて二群間の分散が一様であることが認められたので、次に回帰係数間の差を検定すると次 のとおりである。

二群の平方和,積和を合計して

 $\sum Sx_1^2 = 127.47220277$ 

 $\sum Sx_2^2 = 49.11580570$ 

 $\sum Sy^2 = 779.58586487$ 

 $\sum Sx_1x_2 = 72.64091207$ 

 $\sum Sx_1y = 312.99605641$ 

 $\sum Sx_2y = 186.23274241$ 

この値から回帰係数 01,02 および回帰に基因する平方和を求めると

 $b_1 = 1.87455755$ 

 $b_2 = 1.01928429$ 

$$S\hat{y}^2 = b_1(\sum Sx_1y) + b_2(\sum Sx_2y) = 776.55322925$$

また、二群の回帰からの偏差の平方和を合計して

$$\sum Sdy \cdot x_1x_2^2 = 3.03159286$$

#### 予備的分散分析表

| _ |   |   |   |       |    |        |        |
|---|---|---|---|-------|----|--------|--------|
|   | 変 | 動 | 因 | 自由度   | 7k | 方      | 和      |
|   | 回 |   | 帰 | 4     |    | 776.55 | 427201 |
|   | 誤 |   | 差 | 1,670 |    | 3.03   | 159286 |
|   |   | 計 |   | 1,674 |    | 779.58 | 586487 |

#### 完成した分散分析表

| 変 | 動 | 因 | 自由度   | 平 | 方      | 和       | 華 | 均 | 邓    | 方     |
|---|---|---|-------|---|--------|---------|---|---|------|-------|
| 全 | 口 | 帰 | 2     | • | 776.5  | 5322925 |   |   |      |       |
| 回 | 帰 | 間 | 2     |   | 0.00   | 0104276 |   | 0 | .000 | 20855 |
| 回 | 帰 | 計 | 4     | • | 776.5  | 5427201 |   |   |      |       |
| 誤 |   | 差 | 1,670 |   | 3.03   | 3159286 |   | 0 | .001 | 81533 |
|   | 計 |   | 1,674 | • | 779.58 | 3586487 |   |   |      |       |

$$F = \frac{0.0002\ 0855}{0.0018\ 1533} = 0.1149 < F_{0.05} = 2.99$$
 d.f, 2, 1,670

念のためこのの逆数を求めると F=8.7045< $F_{0.05}=19.385$  d.f, 1,670, 2 したがつて二群間の回帰係数間には有意差が認められない。

- iii. 樹種群間の回帰平面の高さの差の検定
  - (ii) によつて樹種群間の回帰係数には差がない。すなわち、二群の回帰平面は平行であると見なせる

から、この二つの回帰平面が互に重り合つているかどうか、すなわち同一の回帰平面にあるかどうかを 検定する。

今各群の資料の 50cm までのものを込みにして平方和、積和を計算すれば

 $Sx_1^2 = 127.84449947$ 

 $Sx_{2}^{2}=49.58323494$ 

 $Sv^2 = 782.80872585$ 

 $Sx_1x_2 = 73.05807194$ 

 $Sx_1y = 314.09143784$ 

 $Sx_{\nu\nu} = 187.46012150$ 

この値から回帰係数,回帰に基因する平方和を求めると

 $b_1 = 1.87545201$ 

b = 1.01734342

 $S\hat{v}^2 = 779.77473947$ 

#### 予備的分散分析表

| - |   |   |    |       |   |     |      |   |  |     |      |      |    |
|---|---|---|----|-------|---|-----|------|---|--|-----|------|------|----|
|   | 変 | J | th | 因 自由度 |   | ازد | Z    | 方 |  | 和   |      |      |    |
| • | 回 |   |    | 帰     |   |     | 2    |   |  | 779 | .774 | 1739 | 47 |
|   | 回 | 帰 | 間  | 淮     |   |     | 2    |   |  | 0   | .001 | 042  | 76 |
|   | 誤 |   |    | 差     |   | 1   | ,671 |   |  | 3   | .032 | 2943 | 62 |
|   |   | 計 |    |       |   | 1   | ,675 |   |  | 782 | .808 | 3725 | 85 |
|   |   |   |    |       | 1 |     | - 1  |   |  |     |      |      |    |

#### 完成した分散分析表

| 変  | 助   |   | 囚 | 自由度   |   | 平    | 方            | 和          | 水      | 均 | ЭДZ. | 方   |       |
|----|-----|---|---|-------|---|------|--------------|------------|--------|---|------|-----|-------|
| 回  |     |   | 帰 |       | 2 |      | 779.77473947 |            |        |   |      |     |       |
| 回  | 帰   | 間 | 淮 |       |   | 2    |              | 0.00104276 |        |   |      |     |       |
| ЪĽ | 面   | 間 | 差 |       |   | 1    |              | 0.00       | 135094 |   | 0.   | 001 | 35094 |
| 不  | IJj | 原 | 因 |       | 1 | ,670 |              | 3.03       | 159268 |   | 0.   | 001 | 81533 |
|    | Ä   | † |   | 1,675 |   | ,675 | 78           | 82.80      | 872585 |   |      |     |       |

$$F = \frac{0.00135094}{0.00181533} = 0.7442 < F_{0.05} = 3.84$$

0.00135094

d.f, 1, 1,670

念のためこの逆数を求めると

$$F = \frac{0.00181533}{0.00135094} = 1.3437 < F_{0.05} = 254.32$$
 d.f, 1,670, 1

よつて回帰平面の高さにも差が認められない。

以上の検定によって二樹種群の回帰係数、回帰平面の高さにも差が認められないので、胸高直径およ び樹高によって推定される幹材積には樹種群の差がないことが明らかとなった。ただしこれは胸高直径 50cm 以下についてであるが、50cm 以上については資料が不足で断言はできないが、たとえ差があると してもその蓄積は少なくなる傾向で将来は大部分が 50cm 以下の蓄積によつて占められることになるの で実用的には本局管内の幹材積表としては従来どうり樹種区分をしないもので充分であると考える。

#### 2. 地域別幹材積の比較

前節において樹種群別の幹材積には差が認められないが、地域別の差について検討してみる。 地域別の資料の胸高直径分配に不均衡があるので資料が大径級まで一様にある個所をとり、地域的に近似 する個所は一緒にし次の三地域に分類した。

今地域別直径級別本数は第9表のとおりである。

| 地   | 域           | 営村 | 木署           | 総計    | cm<br>4~10 | cm<br>12~20 | cm<br>22~30 | cm<br>32~40 | cm<br>42~50 | cm<br>52~60 | cm<br>62~70 | 72~80 | 82 <b>~</b> 90 | cm<br>92∼ |
|-----|-------------|----|--------------|-------|------------|-------------|-------------|-------------|-------------|-------------|-------------|-------|----------------|-----------|
|     |             | 深  | 浦            | 115   | 13         | 19          | 13          | 15          | 14          | 22          | 8           | 5     | 2              | 4         |
| 青森人 | <b>2</b> 岩手 | Ξ  | 戸            | 120   | 12         | 18          | 22          | 20          | 13          | 11          | 6           | 10    | 7              | 1         |
| 北   | 部           | 田  | 川            | 229   | 27         | 39          | 35          | 33          | 34          | 27          | 16          | 12    | 4              | 2         |
|     |             | F  | <del>†</del> | 464   | 52         | 76          | 70          | 68          | 61          | 60          | 30          | 27    | 13             | 7         |
|     |             | 盛  | 岡            | 98    | 10         | 15          | 9           | 13          | 13          | 18          | 10          | 7     | 3              | _         |
|     |             | 岩  | 泉            | 126   | 26         | 18          | 21          | 28          | 18          | 10          | 3           |       | 1              | 1         |
|     |             | 遠  | 野            | 223   | 31         | 28          | 15          | 20          | 37          | 40          | 25          | 16    | 9              | 2         |
| 岩 手 | 中部          | Ш  | 尻            | 132   | . 9        | 14          | 20          | 19          | 13          | 10          | 11          | 14    | 10             | 12        |
|     |             | 北  | 上            | 95    | 7          | 11          | 14          | 13          | 17          | 18          | 10          | 5     | _              | _         |
|     |             | 水  | 沢            | 109   | 6          | 22          | 26          | 13          | 7           | 14          | 8           | . 8   | 3              | 2         |
|     |             | Ħ  | ተ            | 783   | 89         | 108         | 105         | 106         | 105         | 110         | 67          | 50    | 26             | 17        |
|     |             | 占  | Л            | 119   | 26         | 43          | 18          | 6           | 12          | 5           | 4           | 3     |                | 2         |
|     |             | 仙  | 台            | 77    | 2          | 3           | 8           | 9           | 14          | 13          | 9           | 9     | 5              | 5         |
| 宮   | 城           | 石  | 巻            | 122   | 41         | 65          | 14          | 1           | _           | 1           | _           | _     | _              | _         |
|     |             | 白  | 石            | 159   | 29         | 61          | 28          | 14          | 14          | 10          | 3           | _     | _              |           |
|     |             | ñ  | +            | 477   | 98         | 172         | 68          | 30          | 40          | 29          | 16          | 12    | 5              | 7         |
| 合   | 計           |    |              | 1,724 | 239        | 356         | 243         | 204         | 206         | 199         | 113         | 89    | 44             | 31        |

第 9 表 地 域 別 直 径 級 別 本 数

## イ. 積和, 平方和等の計算

第9表の資料により地域別の積和,平方和を求めると

| 地    | 域   | 本 数 |     | $Sx_1^2$    | $Sx_1x_2$   | $Sx_1y$      |
|------|-----|-----|-----|-------------|-------------|--------------|
| 青森及岩 | 手北部 |     | 464 | 51.25468664 | 25.26660615 | 120.28967016 |
| 岩 手  | 中 部 |     | 783 | 86.83456739 | 42.56574844 | 205.82388668 |
| 宮    | 城   |     | 477 | 49.27873219 | 24.71123869 | 117.07305007 |

| $Sx_2^2$    | $Sx_2y$      | Sy <sup>2</sup> |  |  |  |
|-------------|--------------|-----------------|--|--|--|
| 15.43018272 | 62.07273633  | 285.92214211    |  |  |  |
| 23.60197681 | 103.54468419 | 492.01411367    |  |  |  |
| 14.54377863 | 60.88666746  | 281.27938192    |  |  |  |

## この値から回帰係数および回帰からの偏差の平方和等を求めると

| 地    | 域    | <i>b</i> <sub>1</sub> | $b_2$      | $Sdy \cdot x_1 x_2^2$ | $sy \cdot x_1 x_2^2$ |
|------|------|-----------------------|------------|-----------------------|----------------------|
| 青森及岩 | 当手北部 | 1.88711485            | 0.93270150 | 1.02638492            | 0.00222643           |
| 岩 手  | 中部   | 1.89540134            | 0.96879708 | 1.58145531            | 0.00202751           |
| 宮    | 城    | 1.86791779            | 1.01267326 | 0.93824884            | 0.00197943           |

#### ロ. 回帰係数間の有意差の検定

#### a. 分散の一様性の検定

樹種群間の差の比較と同様各地域の分散が一様であるという前提が必要であるので、ここでは三つ以上 の分散の比較に用いられる Bartlett の検定法によって検定する。

| 地       | 地 域 |   | 本数 $n$   $Sdy \cdot x_1 x_2^2 = q^2$   $f_7 = n$ |            | $f_{\gamma}=n-3$ | $sy \cdot x_1 x_2^2 = s\tau^2$ |
|---------|-----|---|--------------------------------------------------|------------|------------------|--------------------------------|
| 青森及岩手北部 |     |   | 464                                              | 1.02638492 | 461              | 0.00222643                     |
| 岩 手     | 中   | 部 | 783                                              | 1.58145531 | 780              | 0.00202751                     |
| 宫       |     | 城 | 477                                              | 0.93824884 | 474              | 0.00197943                     |
| 計       |     |   | 1,724                                            | 3.54608907 | 1,715            |                                |

|        | log | s <sub>7</sub> <sup>2</sup> | f <sub>γ</sub> logsγ <sup>2</sup> | $\frac{1}{fr}$ |
|--------|-----|-----------------------------|-----------------------------------|----------------|
| 3.3476 | 096 | -2.6523904                  | 1,222.7519744                     | 0.00216920     |
| 3.3069 | 631 | 2.6951369                   | -2,100.6467820                    | 0.00128205     |
| 3.2965 | 302 | 2.7034698                   | 1,281.4446852                     | 0.00210970     |
|        |     |                             | -4,604.7654416                    | 0.00556095     |
|        |     |                             |                                   |                |

#### この表の値を用い Bartlett の検定を行えば,

$$s^2 = \sum_{q^2/f} = 3.54608907/1,715 = 0.00206769$$

$$los S^2 = \bar{3}.3154854 = -2.6845146$$

$$\log s^2 \cdot f = -2.6845146 \times 1,715 = -4,603.9425390$$

$$\chi^2 = \frac{1}{M} [\log s^2 \cdot f - \sum f_7 \log s \gamma^2] \qquad (M = 0.43429)$$

=2.3026[-4,603.9425390+4,604.7654416]=1.8948 1553

#### 補正項

補正された  $\chi^2 = \chi^2/c = 1.8932 < p(\chi^2)_{0.05} = 5,991$ 

d.f. 2

x²の値が小さいので三地域の分散は一様と見なされる。

#### b. 回帰係数の間の差の検定(4cm以上)

地域別の平方和、積和の値を合計して

$$\sum Sx_1^2 = 187.36798622$$

$$\sum Sx_1x_2 = 92.54359328$$

$$\sum Sx_1y = 443.18660691$$
  $\sum Sx_2^2 = 53.57593816$ 

$$\Sigma 1.5r_{c}^{2} = -53.57593816$$

$$\sum Sx_2y = 226.50408798$$

$$\sum Sy^2=1,059.21563770$$

この値から回帰係数および回帰に基因する平方和を求めると

$$b_1 = 1.88768506$$

$$b_0 = 0.96705430$$

$$S\hat{y}^2 = 1,055.63848891$$

#### 完成した分散分析表

| 変 | 動 | 因 | 自由度   | 平    | 方      | 和      | 平 | 均平    | 方      |
|---|---|---|-------|------|--------|--------|---|-------|--------|
| 全 | 回 | 帰 | 2     | 1,0  | 55.638 | 848891 |   |       |        |
| 回 | 帰 | 間 | 4     |      | 0.03   | 105972 |   | 0.007 | 76493  |
| 回 | 帰 | 計 | 6     | 1,0  | 55.669 | 954863 |   |       |        |
| 誤 |   | 差 | 1,715 |      | 3.546  | 508907 |   | 0.002 | 206769 |
|   | 計 |   | 1,721 | 1,05 | 59.21  | 563770 |   |       |        |

 $F=3.7554*>F_{0.00}=2.37$  d.f, 4, 1,715

したがつて三地域の回帰係数の間には差が認められる。ゆえに樹種群の場合と同様胸高直径 50cm 以下に ついて検定して見る。

#### c. 回帰係数の間の差の検定 (4-50cm)

| 地    | 或   | 別  | 本 | 数   | $Sx_1^2$    | $Sx_1x_2$   | $Sx_1y$      |
|------|-----|----|---|-----|-------------|-------------|--------------|
| 青森,岩 | 台手は | 比部 |   | 327 | 28.45243950 | 16.71927382 | 69.92044211  |
| 岩 手  | 中   | 部  |   | 513 | 44.48460314 | 25.63235461 | 109.69208559 |
| 宮    |     | 城  |   | 408 | 27.08104186 | 15.09947992 | 66.42276640  |

| $Sx_2^2$    | $Sx_2y$     | Sy <sup>2</sup> |  |  |  |
|-------------|-------------|-----------------|--|--|--|
| 11.71639288 | 42.62220628 | 173.74702051    |  |  |  |
| 16.33501412 | 64.56357271 | 272.68218358    |  |  |  |
| 10.18029765 | 38.65635507 | 165.26624226    |  |  |  |

#### 以上の値から回帰係数、回帰からの偏差の平方和等を求めると、

| 地域     | 別  | <i>b</i> <sub>1</sub> | $b_2$      | $Sdy \cdot x_1 x_2^2$ | $sy \cdot x_1 x_2^2$ |
|--------|----|-----------------------|------------|-----------------------|----------------------|
| 青森,岩手岩 | 化部 | 1.98051746            | 0.81163087 | 0.67486574            | 0.00208292           |
| 岩 手 中  | 部  | 1.96592876            | 0.86759439 | 1.02036428            | 0.00200071           |
| 宫      | 城  | 1.93951910            | 0.92046718 | 0.85611201            | 0.00211386           |

平方和, 積和を合計して

 $\sum Sx_1^2 = 100.01808450$ 

 $\sum Sx_1y = 57.45110835$ 

 $\sum Sx_1y = 246.03529410$ 

 $\sum Sx_2^2 = 38.23170465$ 

 $\sum Sx_2y = 145.84213406$ 

 $\sum Sy^2 = 611.69544635$ 

この値から回帰係数、回帰に基因する平方和を求めると

 $b_1'=1.96386349$ 

 $b_2' = 0.86357526$ 

 $S\hat{y}^2 = 609.12539021$ 

完成した分散分析表

| 变 | 功   | 因 | 自由度   | 平          | 方            | 和      | 平  | 均   | ŊΖ    | 方     |
|---|-----|---|-------|------------|--------------|--------|----|-----|-------|-------|
| 全 | . 回 | 帰 | 2     | 60         | 09.12        | 539021 |    |     |       |       |
| 口 | 帰   | 間 | 4     | 0.01871411 |              |        | 0. | 004 | 67853 |       |
| 口 | 帰   | 計 | 6     | 60         | 609.14410432 |        |    |     |       |       |
| 誤 |     | 差 | 1,239 |            | 2.55134203   |        |    | 0.  | 002   | 05919 |
|   | 計   |   | 1,245 | 6          | 11.69        | 544635 |    |     |       |       |

$$F=2.2720 < F_{0.05}=2.37$$

d.f, 4, 1,239

#### 有意差なし

## d. 回帰平面間の高さの差の検定

胸高直径 (4-50cm) の資料を込みにして平方和、積和を求めると

 $Sx_1^2 = 104.09553888$ 

 $Sx_1x_2 = 59.98208564$ 

 $Sx_1y = 256.06431832$ 

 $Sx_2^2 = 40.11582236$ 

 $Sx_{y}=152.40598743$ 

 $Sy^2 = 636.71929517$ 

この値から回帰係数および回帰による平方和を求めると

 $b_1'' = 1.95596514$ 

 $b_2'' = 0.87454469$ 

 $S\hat{y}^2 = 634.13872720$ 

#### 予備的分散分析表

| 変 | J | <br>助 | 因     | 自由度           | 平 | 方          | 和       |  |  |
|---|---|-------|-------|---------------|---|------------|---------|--|--|
| 回 |   |       | 帰     | 2             |   | 634.13     | 3872720 |  |  |
| 回 | 帰 | 間     | 差     | 4             |   | 0.01871411 |         |  |  |
| 誤 |   |       | 差     | 1,241         |   | 2.5618538  |         |  |  |
| 計 |   |       | 1,247 | . 636.7192951 |   |            |         |  |  |
| , | , | •     |       |               |   | 2.56       | 5185386 |  |  |

## 完成した分散分析表

| 変 | 助 |       | 因 | 自由度    | 平.           | 方 和        |        | 平  | 屿   | 平     | 方     |
|---|---|-------|---|--------|--------------|------------|--------|----|-----|-------|-------|
| 回 |   |       | 帰 | 2      | 634.13872720 |            |        |    |     |       |       |
| 回 | 帰 | 間     | 差 | 4      | 0.01871411   |            |        |    |     |       |       |
| 亚 | 面 | 間     | 差 | 2      |              | 0.01051183 |        | 0. | 005 | 25592 |       |
| 誤 |   |       | 差 | 1,239  |              | 2.55       | 134203 |    | 0.  | 002   | 05919 |
| 計 |   | 1,247 | 6 | 36.719 | 929517       |            |        |    |     |       |       |

 $F=2.5524 < F_{0.05}=2.99$ 

d.f, 2, 1,239

### 有意差なし

以上によって地域別の差においても樹種群別と同様胸高直径 50cm 以下においては有意な差が認められないので、地域別に材積表を作成する必要がないと認められる。

## ■材積表の構成

前節によつて樹種群および地域別の幹材積については胸高直径 50cm 以下では有意な差が認められないの

で、本局管内の広葉樹立木材積表としては、樹種および地域に関係ない一様な材積表でよいことが明らかであるから、全資料によつて材積式を計算すればよいのであるが、この材積推定方式は幹材積と高次の相関関係にある胸高重径、樹高によつて推定するものであり、胸高直径対幹材積、樹高対幹材積の対数値が完全に直線関係を示すのは、第3図に見られるとおりある範囲についてであり、全体について同一推定式を適用すること、すなわち回帰係数、回帰常数が全直径役にわたり同一であるとみなすことは、必ずしも妥当でないので一応10cmごとの直径級にわけ各直径級の材積式を求め、その間の差の統計的検定を行い、差のない直径級を一括して材積式を求めた。

#### 1. 直径級別材積式の比較

資料の吟味において除かれた資料を除き径級ごとに平方和、積和等を計算すれば第10表のとおりである。

| 直径級                                                                          | 本数                                                        | $Sx_1^2$                                                                                                                                 | $Sx_2^2$                                                                                                                   | $Sx_1x_2$                                                                                                                                | $Sx_1y$                                                                                                    |                                                                                                 | $Sx_2y$                                                                                                    | S                                                                                               | $\dot{y}^2$                                                                                     |
|------------------------------------------------------------------------------|-----------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------|
| 4~10                                                                         | 317                                                       | 5.61962111                                                                                                                               | 4.27731091                                                                                                                 | 3.79643666                                                                                                                               | 13.8914                                                                                                    | 6650 10                                                                                         | .96956703                                                                                                  | 36.                                                                                             | 33800445                                                                                        |
| 12~20                                                                        | 505                                                       | 3.18478899                                                                                                                               | 3.13521134                                                                                                                 | 1.80390103                                                                                                                               | 7.7890                                                                                                     | 6993 6                                                                                          | 5.57688069                                                                                                 | 7688069 22.0                                                                                    |                                                                                                 |
| 22~30                                                                        | 357                                                       | 0.89637491                                                                                                                               | 2.15919251                                                                                                                 | 0.44539982                                                                                                                               | 2.1448                                                                                                     | 9458 3                                                                                          | .19579120                                                                                                  | 8.                                                                                              | 11046318                                                                                        |
| 32~40                                                                        | 263                                                       | 0.35662281                                                                                                                               | 1.06561512                                                                                                                 | 0.10623572                                                                                                                               | 0.8072                                                                                                     | 6885 1                                                                                          | .42180626                                                                                                  | 5 3.                                                                                            | 69056073                                                                                        |
| 42~50                                                                        | 234                                                       | 0.17684215                                                                                                                               | 0.58261265                                                                                                                 | 0.02065049                                                                                                                               | 0.3676                                                                                                     | 5871 0                                                                                          | .65791450                                                                                                  | 1.                                                                                              | 83053649                                                                                        |
| 52~60                                                                        | 217                                                       | 0.10934531                                                                                                                               | 0.70441156                                                                                                                 | 0.03123479                                                                                                                               | 0.2186                                                                                                     | 2387 0                                                                                          | .8662973                                                                                                   | 5 1.                                                                                            | 78235061                                                                                        |
| 62~70                                                                        | 119                                                       | 0.04141170                                                                                                                               | 0.26701543                                                                                                                 | 0.01518984                                                                                                                               | 0.0958                                                                                                     | 1043                                                                                            | .35744126                                                                                                  | 5 0.                                                                                            | 89629198                                                                                        |
| 72 <b>~</b> 80                                                               | 91                                                        | 0.02268098                                                                                                                               | 0.29829044                                                                                                                 | 0.00202205                                                                                                                               | 0.0481                                                                                                     | 6916                                                                                            | .29075479                                                                                                  | 0.                                                                                              | 53638554                                                                                        |
| 82~90                                                                        | 46                                                        | 0.00984375                                                                                                                               | 0.11892801                                                                                                                 | 0.00205308                                                                                                                               | 0.0267                                                                                                     | 8972 0                                                                                          | .08317343                                                                                                  | 0.                                                                                              | 24076929                                                                                        |
| 92~100                                                                       | 20                                                        | 0.00386173                                                                                                                               | 0.05385939                                                                                                                 | 0.00085996                                                                                                                               | 0.0058                                                                                                     | 0092                                                                                            | 0.0620299                                                                                                  | 3 0.                                                                                            | 12865205                                                                                        |
| 102~                                                                         | 15                                                        | 0.01379253                                                                                                                               | 0.03789095                                                                                                                 | 0.00634658                                                                                                                               | 0.0210                                                                                                     | 0375                                                                                            | 0.0419249                                                                                                  | 7 0.                                                                                            | 07603927                                                                                        |
| 全 体                                                                          | 2,184                                                     | 238.21033344                                                                                                                             | 70.30747309                                                                                                                | 119.04582678                                                                                                                             | 565.8065                                                                                                   | 7206 294                                                                                        | 1.1020762                                                                                                  | 1,360.                                                                                          | 01226559                                                                                        |
|                                                                              |                                                           |                                                                                                                                          |                                                                                                                            |                                                                                                                                          |                                                                                                            |                                                                                                 |                                                                                                            |                                                                                                 |                                                                                                 |
| 直径級                                                                          | 本数                                                        | <i>b</i> <sub>1</sub>                                                                                                                    | $b_2$                                                                                                                      | $Sdyx_1x_2^2$                                                                                                                            | 7.a1.a2                                                                                                    | 7.c1 y                                                                                          | 7 .c 2 y                                                                                                   | R <sup>2</sup>                                                                                  | R                                                                                               |
| 直径級                                                                          | 本数<br>317                                                 | δ <sub>1</sub>                                                                                                                           | <i>b</i> <sub>2</sub><br>0.92547766                                                                                        |                                                                                                                                          |                                                                                                            |                                                                                                 | 7.52y 0.87987                                                                                              | R <sup>2</sup>                                                                                  |                                                                                                 |
|                                                                              |                                                           |                                                                                                                                          |                                                                                                                            | 0.53206256                                                                                                                               | 0.77435                                                                                                    |                                                                                                 | <u> </u>                                                                                                   | ·                                                                                               |                                                                                                 |
| 4~10                                                                         | 317                                                       | 1.84673466                                                                                                                               | 0.92547766                                                                                                                 | 0.53206256<br>0.80862398                                                                                                                 | 0.77435<br>0.57087                                                                                         | 0.97211<br>0.92892                                                                              | 0.87987<br>0.79054                                                                                         | 0.98536                                                                                         | 0.99265<br>0.98152                                                                              |
| 4~10<br>12~20                                                                | 317<br>505                                                | 1.84673466<br>1.86546924                                                                                                                 | 0.92547766<br>1.02441542                                                                                                   | 0.53206256<br>0.80862398<br>0.63684219                                                                                                   | 0.77435<br>0.57087<br>0.32015                                                                              | 0.97211<br>0.92892<br>0.79550                                                                   | 0.87987<br>0.79054                                                                                         | 0.98536<br>0.96337                                                                              | 0.99265<br>0.98152                                                                              |
| 4~10<br>12~20<br>22~30                                                       | 317<br>505<br>357                                         | 1.84673466<br>1.86546924<br>1.84669858                                                                                                   | 0.92547766<br>1.02441542<br>1.09914791                                                                                     | 0.53206256<br>0.80862398<br>0.63684219<br>0.51350289                                                                                     | 0.77435<br>0.57087<br>0.32015                                                                              | 0.97211<br>0.92892<br>0.79550                                                                   | 0.87987<br>0.79054<br>0.76368                                                                              | 0.98536<br>0.96337<br>0.92148                                                                   | 0.99265<br>0.98152<br>0.95994                                                                   |
| $4\sim10$ $12\sim20$ $22\sim30$ $32\sim40$                                   | 317<br>505<br>357<br>263                                  | 1.84673466<br>1.86546924<br>1.84669858<br>1.92330033                                                                                     | 0.92547766<br>1.02441542<br>1.09914791<br>1.14251670                                                                       | 0.53206256<br>0.80862398<br>0.63684219<br>0.51350289<br>0.41431888                                                                       | 0.77435<br>0.57087<br>0.32015<br>0.17233<br>0.06433                                                        | 0.97211<br>0.92892<br>0.79550<br>0.70367                                                        | 0.87987<br>0.79054<br>0.76368<br>0.71696                                                                   | 0.98536<br>0.96337<br>0.92148<br>0.86086                                                        | 0.99265<br>0.98152<br>0.95994<br>0.92783                                                        |
| $4\sim10$ $12\sim20$ $22\sim30$ $32\sim40$ $42\sim50$                        | 317<br>505<br>357<br>263<br>234                           | 1.84673466<br>1.86546924<br>1.84669858<br>1.92330033<br>1.95524833                                                                       | 0.92547766<br>1.02441542<br>1.09914791<br>1.14251670<br>1.05994552                                                         | 0.53206256<br>0.80862398<br>0.63684219<br>0.51350289<br>0.41431888<br>0.41614978                                                         | 0.77435<br>0.57087<br>0.32015<br>0.17233<br>0.06433<br>0.11254                                             | 0.97211<br>0.92892<br>0.79550<br>0.70367<br>0.64619<br>0.49522                                  | 0.87987<br>0.79054<br>0.76368<br>0.71696<br>0.63136                                                        | 0.98536<br>0.96337<br>0.92148<br>0.86086<br>0.77366                                             | 0.99265<br>0.98152<br>0.95994<br>0.92783<br>0.87958                                             |
| 4~10<br>12~20<br>22~30<br>32~40<br>42~50<br>52~60                            | 317<br>505<br>357<br>263<br>234<br>217                    | 1.84673466<br>1.86546924<br>1.84669858<br>1.92330033<br>1.95524833<br>1.66923190                                                         | 0.92547766<br>1.02441542<br>1.09914791<br>1.14251670<br>1.05994552<br>1.15580048                                           | 0.53206256<br>0.80862398<br>0.63684219<br>0.51350289<br>0.41431888<br>0.41614978<br>0.27730754                                           | 0.77435<br>0.57087<br>0.32015<br>0.17233<br>0.06433<br>0.11254<br>0.04568                                  | 0.97211<br>0.92892<br>0.79550<br>0.70367<br>0.64619<br>0.49522                                  | 0.87987<br>0.79054<br>0.76368<br>0.71696<br>0.63136<br>0.77314<br>0.73065                                  | 0.98536<br>0.96337<br>0.92148<br>0.86086<br>0.77366<br>0.76652                                  | 0.99265<br>0.98152<br>0.95994<br>0.92783<br>0.87958<br>0.87551                                  |
| 4~10<br>12~20<br>22~30<br>32~40<br>42~50<br>52~60<br>62~70                   | 317<br>505<br>357<br>263<br>234<br>217<br>119             | 1.84673466<br>1.86546924<br>1.84669858<br>1.92330033<br>1.95524833<br>1.66923190<br>1.86143013<br>2.03810129                             | 0.92547766<br>1.02441542<br>1.09914791<br>1.14251670<br>1.05994552<br>1.15580048<br>1.23276205                             | 0.53206256<br>0.80862398<br>0.63684219<br>0.51350289<br>0.41431888<br>0.41614978<br>0.27730754<br>0.15881940                             | 0.77435<br>0.57087<br>0.32015<br>0.17233<br>0.06433<br>0.11254<br>0.04568<br>0.00777                       | 0.97211<br>0.92892<br>0.79550<br>0.70367<br>0.64619<br>0.49522<br>0.49731<br>0.13810            | 0.87987<br>0.79054<br>0.76368<br>0.71696<br>0.63136<br>0.77314<br>0.73065<br>0.72689                       | 0.98536<br>0.96337<br>0.92148<br>0.86086<br>0.77366<br>0.76652<br>0.69061                       | 0.99265<br>0.98152<br>0.95994<br>0.92783<br>0.87958<br>0.87551<br>0.83103<br>0.83899            |
| 4~10<br>12~20<br>22~30<br>32~40<br>42~50<br>52~60<br>62~70<br>72~80          | 317<br>505<br>357<br>263<br>234<br>217<br>119<br>91<br>46 | 1.84673466<br>1.86546924<br>1.84669858<br>1.92330033<br>1.95524833<br>1.66923190<br>1.86143013<br>2.03810129<br>2.58494477               | 0.92547766<br>1.02441542<br>1.09914791<br>1.14251670<br>1.05994552<br>1.15580048<br>1.23276205<br>0.96092145               | 0.53206256<br>0.80862398<br>0.63684219<br>0.51350289<br>0.41431888<br>0.41614978<br>0.27730754<br>0.15881940<br>0.11706266               | 0.77435<br>0.57087<br>0.32015<br>0.17233<br>0.06433<br>0.11254<br>0.04568<br>0.00777<br>0.00060            | 0.97211<br>0.92892<br>0.79550<br>0.70367<br>0.64619<br>0.49522<br>0.49731<br>0.13810<br>0.05503 | 0.87987<br>0.79054<br>0.76368<br>0.71696<br>0.63136<br>0.77314<br>0.73065<br>0.72689<br>0.49152            | 0.98536<br>0.96337<br>0.92148<br>0.86086<br>0.77366<br>0.76652<br>0.69061<br>0.70391            | 0.99265<br>0.98152<br>0.95994<br>0.92783<br>0.87958<br>0.87551<br>0.83103<br>0.83899            |
| 4~10<br>12~20<br>22~30<br>32~40<br>42~50<br>52~60<br>62~70<br>72~80<br>82~90 | 317<br>505<br>357<br>263<br>234<br>217<br>119<br>91<br>46 | 1.84673466<br>1.86546924<br>1.84669858<br>1.92330033<br>1.95524833<br>1.66923190<br>1.86143013<br>2.03810129<br>2.58494477<br>1.76490843 | 0.92547766<br>1.02441542<br>1.09914791<br>1.14251670<br>1.05994552<br>1.15580048<br>1.23276205<br>0.96092145<br>0.65473648 | 0.53206256<br>0.80862398<br>0.63684219<br>0.51350289<br>0.41431888<br>0.41614978<br>0.27730754<br>0.15881940<br>0.11706266<br>0.04522570 | 0.77435<br>0.57087<br>0.32015<br>0.17233<br>0.06433<br>0.11254<br>0.04568<br>0.00777<br>0.00060<br>0.05963 | 0.97211<br>0.92892<br>0.79550<br>0.70367<br>0.64619<br>0.49522<br>0.49731<br>0.13810<br>0.05503 | 0.87987<br>0.79054<br>0.76368<br>0.71696<br>0.63136<br>0.77314<br>0.73065<br>0.72689<br>0.49152<br>0.74518 | 0.98536<br>0.96337<br>0.92148<br>0.86086<br>0.77366<br>0.76652<br>0.69061<br>0.70391<br>0.51380 | 0.99265<br>0.98152<br>0.95994<br>0.92783<br>0.87958<br>0.87551<br>0.83103<br>0.83899<br>0.71680 |

第10表 径級ごとの平方和,積和等

#### イ. 分散の一様性の検定 (Bartlett 法)

地域別の分散の一様性検定と同じ方法で次のとおり検定する。

| 直径級        | n     | $Sdy \cdot x_1 x_2^2 = q^2$ | <i>f</i> γ= <i>n</i> 3 | $sy \cdot x_1 x_2^2 = s \gamma^2$ | $\log^s y \cdot x_1 x_2^2$ |
|------------|-------|-----------------------------|------------------------|-----------------------------------|----------------------------|
| cm<br>4~10 | 317   | 0.53206256                  | 314                    | 0.00169447                        | -2.7709662                 |
| 12~20      | 505   | 0.80862398                  | 502                    | 0.00161080                        | 2.7929584                  |
| 22~30      | 357   | 0.63684219                  | 354                    | 0.00179899                        | -2.7449711                 |
| 32~40      | 263   | 0.51350289                  | 260                    | 0.00197501                        | -2.7044307                 |
| 42~50      | 234   | 0.41431888                  | 231                    | 0.00179359                        | -2.7462767                 |
| 52~60      | 217   | 0.41614978                  | 214                    | 0.00194462                        | -2.7111652                 |
| 62~70      | 119   | 0.27730754                  | 116                    | 0.00239058                        | -2.6214967                 |
| 72~80      | 91    | 0.15881940                  | 88                     | 0.00180476                        | -2.7435806                 |
| 82~90      | 46    | 0.11706266                  | 43                     | 0.00272239                        | -2.5652108                 |
| 92~100     | 20    | 0.04522570                  | 17                     | 0.00260335                        | -2.5844674                 |
| 102~       | 15    | 0.01429381                  | 12                     | 0.00119115                        | -2.9240334                 |
| 計          | 2,184 | 3.93420939                  | 2,151                  |                                   |                            |

$$s^2 = \sum g^2/f = 0.00182901$$

 $\log s^2 \cdot f = -5,888.9731689$ 

 $\sum f_{\gamma} \log s_{\gamma^2} = -5,896.4566489$ 

$$\chi^2 = \frac{1}{M} [\log s^2 \cdot f - \sum f_{\uparrow} \cdot \log s^2 \gamma] = 17.23146105$$

補正項 
$$\epsilon = 1 + \frac{1}{3(\epsilon - 1)} \left[ \sum \frac{1}{f_{\gamma}} - \frac{1}{f} \right] = 1.00685939$$

補正された 
$$\chi^2 = \chi^2/c = 17.1141 < \rho(\chi)_{0.05}^2 = 18.307$$

d.f, 10

有意差なし、したがつて直径級毎の分散は一様と見なされる。

- ロ. 回帰係数間の差,回帰平面間の高さの差の検定
  - a. 全径級を一括した場合の検定
    - i. 回帰係数間の差の検定

各直径級毎の平方和、積和を合計する。

第11表 径級毎の平方和、積和の合計(回帰係数の差の検定のために)

| 径級範囲         | 本 数   | $\sum Sx_1^2$ | $\sum Sx_2^2$         | $\sum Sx_1x_2$ | $\sum Sx_1y$ | $\sum Sx_2y$              |
|--------------|-------|---------------|-----------------------|----------------|--------------|---------------------------|
| cm           |       |               |                       |                |              |                           |
| 4~           | 2,184 | 10.43518597   | 12.70033831           | 6.22861010     | 25.41655642  | 24.52358141               |
| $4 \sim 70$  | 2,012 | 10.38500698   | 12.19136952           | 6.21904835     | 25.31479287  | 24.04569829               |
| 4~50         | 1,676 | 10.23424997   | 11.21994253           | 6.17262372     | 25.00035857  | 22.82195968               |
| $12 \sim 70$ | 1,695 | 4.76538587    | 7.91405861            | 2.42261169     | 11.42332637  | 13.07613126               |
| $12\sim50$   | 1,359 | 4.61462886    | 6.94263162            | 2.37618706     | 11.10889207  | 11.85239265               |
| $52\sim70$   | 336   | 0.15075701    | 0.97142699            | 0.04642463     | 0.31443430   | 1.22373861                |
| 72 <b>~</b>  | 172   | 0.05017899    | 0.50896879            | 0.00956175     | 0.10176355   | 0.47788312                |
| 径級範囲         | 本 数   | $\sum Sy^2$   | <i>b</i> <sub>1</sub> | $b_2$          | Sŷ²          | $\sum Sdy \cdot x_1x_2^2$ |
| cm           |       |               |                       |                |              |                           |
| 4~           | 2,184 | 75.70640587   | 1.81800263            | 1.04121728     | 71.74174315  | 3.93420939                |
| $4\sim70$    | 2,012 | 74.72455972   | 1.80915408            | 1.04946977     | 71.03359426  | 3.59880782                |
| $4\sim 50$   | 1,676 |               | 1.81985832            | 1.03286248     | 69.06905643  | 2.90535050                |
| $12\sim70$   | 1,697 | 38.38665527   | 1.84416444            | 1.08773981     | 35.28992081  | 3.06674526                |
| $12\sim50$   | 1,359 |               | 1.85520426            | 1.07222757     | 33.31772606  | 2.37328794                |
| $52\sim70$   | 336   |               | 1.72313502            | 1.17738413     | 1.98262317   | 0.69345732                |
| $72\sim$     | 172   | 0.98184615    | 1.85571614            | 0.90406143     | 0.62087996   | 0.33540157                |
|              | i 1   |               |                       |                | i            |                           |

完成した分散分析表

| 变 | 動 | 因 | 自由度   | 平 | 方      | 和      | 苹 | 均i   | 平方      |
|---|---|---|-------|---|--------|--------|---|------|---------|
| 全 | 回 | 帰 | 2     | 7 | 71.74  | 174315 |   |      |         |
| 口 | 帰 | 間 | 20    |   | 0.030  | 045333 |   | 0.00 | )152267 |
| 回 | 帰 | 計 | 22    | 7 | 71.772 | 219648 |   |      |         |
| 誤 |   | 差 | 2,151 |   | 3.93   | 120939 |   | 0.00 | 0182901 |
|   | 計 |   | 2,173 | 7 | 75.70  | 540587 |   |      |         |

 $F=0.8303 < F_{0.05}=1.57$  d.f, 20, 2,151

念のためこの逆数を求めれば $F=1.2012 < F_{0.05}=1.84$ ,有意差なし,

## ii. 回帰平面間の高さの差の検定

各直径級の平方和、積和を計算する。

第12表 径級毎の平方和、積和等(回帰平面の高さの差の検定のために)

| 径級範囲  | 本 数   | $Sx_1^2$     |       | $Sx_2^2$     | $Sx_1$     | $x_2$   | $Sx_1y$    |       | $Sx_2y$        |
|-------|-------|--------------|-------|--------------|------------|---------|------------|-------|----------------|
| 4~ cm | 2,184 | 238.21033344 | 70    | .30747309    | 119.0      | 4582678 | 565.8065   | 7206  | 294.10207621   |
| 12~70 | 1,695 | 85.46075383  | 24    | .79218274    | 38.9       | 8064111 | 200.8301   | 5142  | 99.26447261    |
| 12~50 | 1,359 | 47.55462522  | 17    | .96156795    | 24.0       | 7524363 | 114.7188   | 30505 | 64.24740178    |
| 52~70 | 336   | 0.56688775   | 0     | .99337576    | 0.1        | 4199428 | 1.0961     | 1700  | 1.40326185     |
| 72~   | 172   | 0.47362305   | 0     | .56941495    | 0.1        | 6748990 | 0.9837     | 4901  | 0.80858378     |
| 径級範囲  | 本 数   | Sy2          |       | $b_1$        |            |         | $b_2$      |       | Sŷ²            |
| 4~    | 2.184 | 1,360.0122   | 26559 | 1.8          | 35120067   |         | 1.04859251 |       | 1,355.81473964 |
| 12~70 | 1.695 | 483.4473     | 37335 | 1.8          | 35163290   |         | 1.09254562 |       | 480.31468040   |
| 12~50 | 1.359 | 285.7348     | 36467 | 1.8          | 37135186   |         | 1.06862278 |       | 283.33548642   |
| 52~70 | 336   | 4.1469       | 9805  | $1.\epsilon$ | 53839737   |         | 1.17842498 |       | 3.44951403     |
| 72~   | 172   | 2.82149575   |       | 1.7          | 1.75773982 |         | 0.90299721 |       | 2.45932371     |

## 予備的な分散分析表

| • | 変 | 1 | 勆 | 因 | 自由度   | 承 | 方      | 和       |
|---|---|---|---|---|-------|---|--------|---------|
|   | 回 |   |   | 帰 | 2     | : | 355.8  | 1473964 |
|   | 口 | 帰 | 間 | 差 | 20    |   | 0.0    | 3045333 |
|   | 誤 |   |   | 差 | 2,161 |   | 4.1    | 6707262 |
|   |   | Ħ | + |   | 2,183 | : | ,360.0 | 1226559 |
|   |   |   |   |   |       |   |        |         |

完成した分散分析表

| 変 | I | 力  | 因 | 自由度   | 平    | 方      | 和      | 平均平方       |
|---|---|----|---|-------|------|--------|--------|------------|
| 回 |   |    | 帰 | 2     | 1,35 | 55.814 | 173964 |            |
| 回 | 帰 | 間  | 差 | 20    |      | 0.030  | 045333 |            |
| 平 | p | ij | 間 | 10    |      | 0.232  | 286323 | 0.02328632 |
| 不 | 明 | 原  | 因 | 2,151 |      | 3.934  | 120939 | 0.00182901 |
|   | Ħ | t  |   | 2,183 | 1,36 | 50.012 | 226559 |            |

 $F=12.7317**>F_{0.05}=1.83$ 

d.f, 10, 2,151

全径数を一括した場合 平面間の高さに 有意な差が認められる, 第10表によって見れば 72cm 以上 の回帰係数が他の数値と異るので、これを除いて検定してみる。

- b. 4~70cm の差の検定
  - i. 回帰係数間の差の検定(第11表参照)

完成した分散分析表

| 変 | 動 | 因 | 自由度   | 亚 | 方     | 和      | 亚 | 均  | 平   | 方     |
|---|---|---|-------|---|-------|--------|---|----|-----|-------|
| 全 | 回 | 帰 | 2     |   | 71.03 | 359426 |   |    |     |       |
| 回 | 帰 | 間 | 12    |   | 0.09  | 215764 |   | 0. | 007 | 67980 |
| 回 | 帰 | 計 | 14    |   | 71.12 | 575190 |   |    |     |       |
| 誤 |   | 差 | 1,991 |   | 3.59  | 880782 |   | 0. | 001 | 80754 |
|   | 計 |   | 2,005 |   | 74.72 | 455972 |   |    |     |       |

 $F=4.2488**>F_{0.06}=1.75$  d.f, 12, 1,991

有意差あり、4~70cm を一括出来ない。故に 52-70cm を除いて検定して見る。

- c. 4~50cm の差の検定
  - i. 回帰係数間の差の検定(第11表参照)

完成した分散分析表

| 変     | 動 | ————<br>因 | 自由度   | 並 |            | 和      | 平   | 均平方        |
|-------|---|-----------|-------|---|------------|--------|-----|------------|
| <br>全 | 回 | ————<br>帰 | 2     |   | <br>69.069 | 905643 |     |            |
| 回     | 帰 | 間         | 8     |   | 0.07       | 151020 |     | 0.00893878 |
| 回     | 帰 | 計         | 10    |   | 69.14      | 056663 | i i |            |
| 誤     |   | 差         | 1,661 |   | 2.90       | 535050 |     | 0.00174916 |
|       | 計 |           | 1,671 |   | 72.04      | 591713 |     |            |
|       |   |           |       |   |            |        |     |            |

 $F=5.1103**>F_{0.05}=1.94$  d.f, 8, 1,661

有意差あり、4~10cm の係数が他と異るので、これを除いて検定して見る。

- d. 12~50cm の差の検定
  - i. 回帰係数間の差の検定(第11表参照)

完成した分散分析表

| 変 | 動 | 因 | 自由度   | 平 | 方     | 和      | 並 | 屿  | 邓   | 方     |
|---|---|---|-------|---|-------|--------|---|----|-----|-------|
| 全 | 回 | 帰 | 2     |   | 33.31 | 772606 |   |    |     |       |
| 回 | 帰 | 間 | 6     |   | 0.01  | 589868 |   | 0. | 002 | 31644 |
| 回 | 帰 | 計 | 8     |   | 33.33 | 462474 |   |    |     |       |
| 誤 |   | 差 | 1,347 |   | 2.37  | 328794 |   | 0, | 001 | 76191 |
|   | 計 |   | 1,355 |   | 35.70 | 791268 |   |    |     |       |

 $F=1.5985 < F_{0.05}=2.09$ 

d.f, 6, 1,347

有意差なし

## ii. 回帰平面の高さの差の検定(第 12 表参照)

#### 予備的な分散分析表

| • | 変 | 動 |   | 因 | 自由度   | 並 | 方      | 和      |
|---|---|---|---|---|-------|---|--------|--------|
|   | 回 |   |   | 帰 | 2     |   | 283.33 | 548642 |
|   | 回 | 帰 | 間 | 差 | 6     |   | 0.01   | 689868 |
|   | 誤 |   |   | 差 | 1,350 |   | 2.38   | 247957 |
|   |   | i | + |   | 1,358 |   | 285.73 | 486467 |
|   |   |   |   |   |       |   |        |        |

#### 完成した分散分析表

| 変 | 動   | 因  | 自由度   | 並  | 方     | 和      | 平 | 均平方        |
|---|-----|----|-------|----|-------|--------|---|------------|
| 回 |     | 帰  | 2     | 28 | 83.33 | 548642 |   |            |
| 亘 | 帰間  | 月差 | 6     |    | 0.01  | 689868 |   |            |
| 邓 | 面   | 閒  | 3     |    | 0.00  | 919163 |   | 0.00306623 |
| 不 | 明 房 | 区  | 1,347 |    | 2.37  | 328794 |   | 0.00176191 |
|   | 計   |    | 1,358 | 28 | 85.73 | 486467 |   |            |

 $F=1.7403 < F_{0.05}=2.60$  d.f, 3, 1,347

回帰係数間及回帰平面間の高さにおいても差が認められないので 12~50cm は、同一回帰係数によ つて幹材積を推定しても差支えないことがわかつた。

- e. 52~70cm の差の検定
  - i. 回帰係数間の差の検定(第11表参照)

完成した分散分析表

| 動  | 因                | 自由度                      | 平                                  | 方                                  | 和                                                          | 並                                                                              | 均了平                                                                            | 方                                                                                           |
|----|------------------|--------------------------|------------------------------------|------------------------------------|------------------------------------------------------------|--------------------------------------------------------------------------------|--------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|
| 回  | 帰                | 2                        | 1,98262317                         |                                    |                                                            |                                                                                |                                                                                |                                                                                             |
| 帰間 | 差                | 2                        |                                    | 0.00                               | 256210                                                     |                                                                                | 0.001                                                                          | 28105                                                                                       |
| 帰  | 計                | 4                        |                                    | 1.98                               | 518527                                                     |                                                                                |                                                                                |                                                                                             |
|    | 差                | 330                      |                                    | 0.69                               | 345732                                                     | •                                                                              | 0.002                                                                          | 10139                                                                                       |
| 計  |                  | 334                      | 2.67864259                         |                                    |                                                            |                                                                                |                                                                                |                                                                                             |
|    | 回<br>帰<br>間<br>帰 | 回 帰<br>帰 間 差<br>帰 計<br>差 | 回 帰 2<br>帰 間 差 2<br>帰 計 4<br>差 330 | 回 帰 2<br>帰 間 差 2<br>帰 計 4<br>差 330 | 回 帰 2 1,985<br>帰 間 差 2 0.000<br>帰 計 4 1.985<br>差 330 0.695 | 回 帰 2 1,98262317<br>帰 間 差 2 0.00256210<br>帰 計 4 1.98518527<br>差 330 0.69345732 | 回 帰 2 1,98262317<br>帰 間 差 2 0.00256210<br>帰 計 4 1.98518527<br>差 330 0.69345732 | 回 帰 2 1,98262317<br>帰 間 差 2 0.00256210 0.0015<br>帰 計 4 1.98518527<br>差 330 0.69345732 0.002 |

 $F=0.6096 < F_{0.05}=3.02$  d.f, 2, 330

念のためこの逆数を求めると F=1.6404<F<sub>0.05</sub>=19.496

d.f, 330, 2

有意差なし

ii. 回帰平面間の高さの差の検定(第12表参照)

## 予備的な分散分析表

| • |   |    |   |     |   |      |         |
|---|---|----|---|-----|---|------|---------|
| 変 | Ą | )) | 因 | 自由度 | 챞 | 方    | 和       |
| 回 |   |    | 帰 | 2   |   | 3.44 | 1951403 |
| 口 | 帰 | 間  | 差 | 2   |   | 0.00 | 0256210 |
| 誤 |   |    | 差 | 331 |   | 0.69 | 9492192 |
|   | Ē | ተ  |   | 335 |   | 4.14 | 1699805 |

完成した分散分析表

| 変 | 1 | ij | 因 | 自由度      | 平          | 方          | 和              | 苹 | 屿              | 平   | 方          |  |    |     |       |
|---|---|----|---|----------|------------|------------|----------------|---|----------------|-----|------------|--|----|-----|-------|
| 回 |   |    | 帰 | 2        | 3.44951403 |            | 3.44951403     |   |                |     |            |  |    |     |       |
| 口 | 帰 | 間  | 差 | 2        |            | 0.00256210 |                |   |                |     |            |  |    |     |       |
| 並 | Ī | ij | 間 | 1        |            | 0.001      | 146460         |   | 0.             | 001 | 46460      |  |    |     |       |
| 不 | 明 | 原  | 因 | 330      | 0.69345732 |            | 330 0.69345732 |   | 330 0.69345732 |     | 0.69345732 |  | 0. | 002 | 10139 |
|   | 青 | t  |   | 335      | 4.14699805 |            |                |   |                |     |            |  |    |     |       |
|   |   |    |   | <u> </u> |            |            |                |   |                |     |            |  |    |     |       |

 $F=0.6970 < F_{0.05}=3.86$  d.f, 1, 330

念のためこの逆数を求めると

 $F=1.4348 < F_{0.05}=254.0$  d.f, 330, 1

以上の検定により52~70cmは同一推定式によって差支えない。

- f. 72cm 以上の差の検定
  - i. 回帰係数間の差の検定(第11表参照)

完成した分散分析表

| 変 | 動  | 因 | 自由度   | 平 | 方          | 和      | 苹 | 均  | 址   | 方           |
|---|----|---|-------|---|------------|--------|---|----|-----|-------------|
| 全 | 回  | 帰 | 2     |   | 0.62087996 |        |   |    |     |             |
| 旦 | 帰間 | 差 | 6     |   | 0.02       | 556462 |   | 0. | 004 | 26077       |
| 回 | 帰  | 計 | 8     |   | 0.64644458 |        |   |    |     |             |
| 誤 |    | 差 | 160   |   | 0.33       | 540157 |   | 0. | 002 | 09626       |
|   | 計  |   | 168 0 |   | 0.98       | 184615 |   |    |     |             |
|   |    |   | ·     |   |            |        |   |    |     | <del></del> |

$$F=2.0325 < F_{0.05}=2.09$$
 d.f, 6, 160

有意差なし

## ii. 回帰平面間の高さの差の検定(第12表参照)

予備的な分散分析表

| 変 | 1 | d) | 因 | 自由度 | 址 | 方    | 和       |
|---|---|----|---|-----|---|------|---------|
| 回 |   |    | 帰 | 2   |   | 2.4  | 5932371 |
| 口 | 帰 | 間  | 差 | 6   |   | 0.0  | 2556462 |
| 誤 |   |    | 差 | 163 |   | 0.33 | 3660742 |
|   | ā | +  |   | 171 |   | 2.8  | 2149575 |
|   |   |    |   |     |   |      |         |

完成した分散分析表

| 変 | 1 | 助 | 因 | 自由度      | 平 | 方          | 和      | 並 | 屿  | 邓   | 方     |
|---|---|---|---|----------|---|------------|--------|---|----|-----|-------|
| 回 |   |   | 帰 | 2        |   | 2.45932371 |        |   |    |     |       |
| 回 | 帰 | 間 | 差 | 6        |   | 0.02       | 556462 |   |    |     |       |
| 並 | 面 | 間 | 差 | 3        |   | 0.00120585 |        |   | 0. | 000 | 40195 |
| 不 | 明 | 原 | 因 | 160      |   | 0.33       | 540157 |   | 0. | 002 | 09626 |
|   | Ī | H |   | 171      |   | 2.82       | 149575 |   |    |     |       |
|   |   |   |   | <u> </u> |   |            |        |   |    |     |       |

 $F=0.1917 < F_{0.05}=2.67$ 

d.f, 3, 160

回帰係数間の差の検定 F 径級範囲 本 数 修正x2 平均された回帰係数 回帰間の分散 誤差分散 cm 0.8325 0.00182901 4~ 2,184 17.1141 1.81800 1.04122 0.00152267 4.2488 4~70 2,012 1.80915 1.04947 0.00767980 0.00180754 5.1103 4~50 1.81986 1.03286 0.00893878 0.00174916 1,676 12~50 1,359 1.85520 1.07223 0.00281644 0.00176191 1.5985 52~70 336 1.72313 1.17738 0.00128105 0.00210139 0.6096 72~ 172 1.85572 0.90406 0.00426077 0.00209626 2.0325 回帰平 面間の差の検定 径級節囲 本 数 込みにした回帰係数 F平面間の分散 不明原因 11.57434~ 2,184 1.85120 1.04859 0.02116938 0.00182901 4~70 2,012 4~50 1,676 12~50 1,359 1.06862 0.00306623 0.00176191 1.7403 1.87135 52~70 336 1.17842 0.00210139 1.63840 0.00146460 0.6970 72~ 172 0.90300 0.00209626 1.75774 0.00040195 0.1917

第13表 直径級別材積式比較の取纒め

#### 2. 材積式の決定

樹種群別,地域別の材積推定式の検討の結果有意差が認められず,また直径級毎の推定式の検討の結果は,第13表のとおりで材積式としては4つの推定式を用いることが適当であることがわかつた。 決定した材積方程式は第14表のとおりである。

|                |       |                                | たした物版.              |        | <u> </u>                    |
|----------------|-------|--------------------------------|---------------------|--------|-----------------------------|
| 径級範囲           | 本 数   | 対数で表わし                         | たもの                 | 美      | <br>【数で表わしたもの               |
| 4~10           | 317   | $\hat{Y} = -1.19330 + 1.84673$ | $3X_1 + 0.92548X_2$ | v=-    | 0.06408 d 1.87135 h 1.06862 |
| $12\sim50$     | 1,359 | $\hat{Y} = -1.36650 + 1.87135$ | $5X_1 + 1.06862X_2$ | v=-    | 0.04300 d 1.63840 h 1.17843 |
| 52~70          | 336   | $\hat{Y} = -1.11476 + 1.63840$ | $0X_1 + 1.17842X_2$ | v = -1 | 0.07678 d 1.84673 h 0.92548 |
| 72~            | 172   | $\hat{Y} = -0.93662 + 1.75774$ | $4X_1 + 0.90300X_2$ | v=-    | 0.11598 d 1.75774 h 0.90300 |
| 径級範囲           | 本 数   | 不偏分散                           | 標 準 部               | 具 差    | 重相関係数                       |
| 4~10           | 317   | 0.00000647                     | i                   | 0.0025 | 0.99265                     |
| 12~50          | 1.359 | 0.00897803                     | :±                  | 0.0978 | 0.99579                     |
| 52 <b>~</b> 70 | 336   | 0.09220870                     | 1                   | 0.3037 | 0.91154                     |
| <b>7∼</b> 2    | 172   | 0.48268924                     | ±                   | 0.6948 | 0.93362                     |

第14表 決定した材積式

不偏分散は真数である。

また、この推定式は、対数計算によるものであり推定値にかたよりが入つてくるので、このかたよりを除くため、分布が不明な場合について林業試験場大友技官は次式を修正係数として算出された。

$$f=10^{\frac{n-1}{n}} \cdot \frac{1}{2} (\log_{10} e) \sigma^2$$

たゞし n;資料の数,  $\sigma^2$ ;分散, e;自然対数の底

今各材積推定式の修正係数を計算すれば次のとおりである。

| 胸高直径 | 4~10cm           | 1.00392 |
|------|------------------|---------|
| "    | 12~50 //         | 1.00471 |
| "    | 52 <b>~</b> 70 ″ | 1.00558 |
| "    | 72 <b>~</b> "    | 1.00573 |

したがつて求める幹材積は推定値に以上の修正係数を乗じて求める。

#### Ⅵ枝条率表の作成

広葉樹酔材積表を作成するにあたつて幹材と枝条材を分割することが目的であつたので、次の方法によつて枝条率表作成の方法を検討した。

従来枝条は幹材に比し 実用的価値が少ないため、枝条材積表は少なく 本邦では広葉樹については 清野博士<sup>1)</sup>の「主要閩種材種別材積表調製に関する研究」、中島博士<sup>4)</sup>の「北海道潤葉樹標準材積表」等であり、前者は胸高直径に対する 粗朶材積率表(地上より 皮付直径 7 cm 未満の材積の同 7 cm 以上の部分の材積比を100 分率で示したもの)として、後者は樹種別に枝条材積を幹材積の100 分率で示したものである。

針葉樹の枝条率については山本博士<sup>10</sup>は樹高と樹冠の長さの比より直線式によつて求め、また麻生氏は胸高直径と幹材積に関係せしめて枝条量表を作成されている。

以上のように枝条量は胸高直径、樹高、樹冠長または枝下高によつて変化することが明らかであるが、われわれが行う測菌の方法は一般に胸高直径と樹高とを測定して材積を推定する方式をとつており、胸高直径は毎木実測であるが、樹高は必らずしも実測ではなく目測によることがおいので、ここでは目測による因子を除き実測する胸高直径の函数として求めたのである。

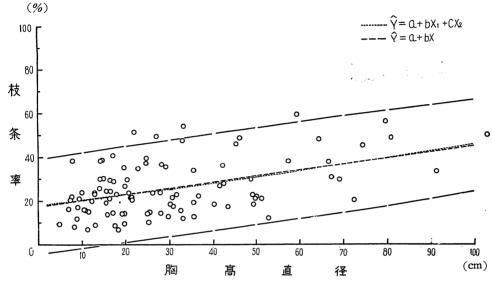
また、広葉樹の枝条量は一般に千差万別で同一樹種、同一林令にあつても樹型が定まらず生育環境によっても変るので、樹種によつて分類することが困難であるが外観上より近藤氏®の分類に従い【型(羽状型、サワグルミ、カッラ等のように生育過程の性質上は〝確定した一つの通直な主幹をもつているもの)、【型(箒状型、ブナ、ミヅナラ等のように多くの枝を分岐して確定した主幹の判定困難なもの)に大別し、この二つの型に差が認められるか否かを検討してみた。

今この二つの型の直径級別本数および樹種名を示すと第15表のとおりである。

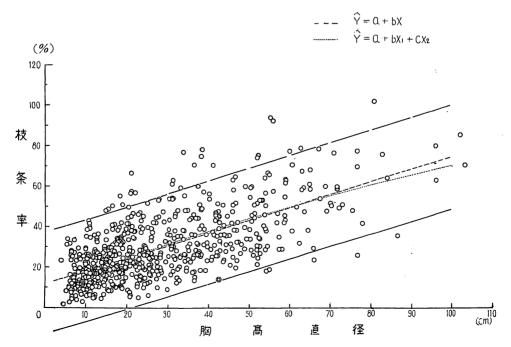
cm cm cm cm cm cm cml cm 区 分 総 数 4~10 12~20 22~30 32~40 42~50 52~60 62~70 72~80 型(羽状型) 97 12 30 20 10 4 型(箒状型) 190 50 652 102 117 89 67 19 10 78 749 114 220 137 99 54 23 13

第15表 型別直径級別本数

| cm<br>82—90 | cm<br>92以上  | 樹                                        | 種                        | 名                           |
|-------------|-------------|------------------------------------------|--------------------------|-----------------------------|
| 1<br>4<br>5 | 2<br>4<br>6 | サワグルミ, カツラ, セ<br>オヒヨウニレ, アサダ,<br>【型以外の樹種 | ン,ホホノキ,キハダ<br>ハルニレ, ヤマナラ | 、ヤチダモ,シウリザクラ,<br>シ,トネリコ,ニガキ |


なお,型別の直径階別平均枝条率を示すと第16表のとおりである。

第16表 直径階別本数平均枝条率


|                         | 第16表 直径階別本数平均枝条率      |                                      |                                      |                            |                                      |                                      |  |  |  |  |  |  |  |
|-------------------------|-----------------------|--------------------------------------|--------------------------------------|----------------------------|--------------------------------------|--------------------------------------|--|--|--|--|--|--|--|
| 胸高直径階                   |                       | I 型                                  |                                      |                            | Ⅱ 型                                  |                                      |  |  |  |  |  |  |  |
| 鸠间山壮阳                   | 本 数                   | 平均直径                                 | 平均枝条率                                | 本 数                        | 平均直径                                 | 平均枝条率                                |  |  |  |  |  |  |  |
| 6<br>8<br>10            | 本<br>1<br>1<br>5<br>5 | cm<br>4.8<br>6.9<br>7.9<br>9.9       | 9.1<br>15.9<br>19.8<br>18.5          | 本<br>2<br>23<br>31<br>46   | 4.3<br>6.2<br>7.8<br>10.0            | 12.5<br>16.0<br>12.6<br>19.4         |  |  |  |  |  |  |  |
| 2<br>4<br>6<br>8<br>20  | 5<br>6<br>6<br>7      | 12.1<br>14.1<br>16.1<br>17.6<br>20.0 | 17.5<br>28.5<br>21.9<br>20.2<br>21.5 | 45<br>40<br>35<br>36<br>33 | 11.9<br>14.0<br>16.0<br>17.8<br>26.0 | 18.3<br>20.6<br>23.4<br>26.2<br>28.2 |  |  |  |  |  |  |  |
| 2<br>4<br>6<br>8<br>30  | 5<br>4<br>2<br>4<br>5 | 21.8<br>24.1<br>25.6<br>27.8<br>30.1 | 29.8<br>25.3<br>18.7<br>31.0<br>20.8 | 30<br>26<br>25<br>20<br>17 | 21.9<br>23.7<br>25.7<br>27.8<br>30.1 | 29.0<br>26.0<br>26.5<br>29.0<br>31.2 |  |  |  |  |  |  |  |
| 2<br>4<br>6<br>8<br>40  | 2<br>3<br>4<br>—<br>1 | 32.6<br>33.1<br>35.8<br>—<br>40.2    | 19.0<br>37.8<br>21.7<br>—<br>18.0    | 23<br>16<br>18<br>22<br>10 | 31.9<br>34.0<br>36.1<br>38.0<br>39.9 | 34.9<br>36.0<br>32.3<br>40.7<br>34.5 |  |  |  |  |  |  |  |
| 2<br>4<br>6<br>8<br>50  | 3<br>1<br>2<br>1<br>4 | 42.0<br>43.4<br>45.8<br>48.9<br>49.7 | 30.0<br>16.9<br>47.2<br>29.5<br>20.7 | 23<br>11<br>13<br>8<br>12  | 42.1<br>43.9<br>46.1<br>47.4<br>50.1 | 38.2<br>34.6<br>40.8<br>35.1<br>44.1 |  |  |  |  |  |  |  |
| 2<br>4<br>6<br>8<br>60  | 1<br>1<br>-<br>1<br>1 | 51.4<br>53.0<br>—<br>57.5<br>59.5    | 20.7<br>11.6<br>—<br>38.0<br>59.4    | 17<br>13<br>5<br>6<br>9    | 52.1<br>54.1<br>55.6<br>57.7<br>59.6 | 40.9<br>45.3<br>65.9<br>37.6<br>57.7 |  |  |  |  |  |  |  |
| 2<br>4<br>6<br>8<br>70  | 1<br>1<br>1<br>1      | 64.5<br>66.9<br>67.4<br>69.2         | 48.1<br>37.9<br>30.7<br>29.3         | 2<br>6<br>5<br>2<br>4      | 62.2<br>63.6<br>65.6<br>67.7<br>69.9 | 41.0<br>58.5<br>48.4<br>66.3<br>52.1 |  |  |  |  |  |  |  |
| 2<br>4<br>6<br>8<br>80  | 1<br>1<br>-<br>1      | 72.5<br>74.5<br>—<br>—<br>79.7       | 20.1<br>45.4<br>—<br>56.3            | 4<br>1<br>3<br>2           | 71.9<br>73.2<br>76.5<br>77.6         | 61.2<br>51.1<br>50.6<br>55.9         |  |  |  |  |  |  |  |
| 2<br>4<br>6<br>8<br>90  | 1<br>-<br>-<br>-      | 81.1                                 | 48.8<br>—<br>—<br>—<br>—             | 1<br>2<br>1<br>—           | 81.0<br>83.7<br>86.6<br>—            | 102.0<br>70.1<br>35.8<br>—           |  |  |  |  |  |  |  |
| 2<br>4<br>6<br>8<br>100 | 1<br>-<br>-<br>-      | 91.5<br>—<br>—<br>—<br>—             | 33.1<br>—<br>—<br>—<br>—             | 2<br><br><br>              | 96.3<br><br><br>                     | 71.5                                 |  |  |  |  |  |  |  |
| 2<br>4                  | <u> </u>              | 103.1                                | <br>50.0                             | 1<br>1                     | 102.2<br>103.5                       | 85.2<br>70.5                         |  |  |  |  |  |  |  |

#### 1. 枝条率推定式の吟味

前節で区分した二樹種型の枝条量を幹材積で除した値の 100 分率を枝条率とし、横軸に胸高直径、縦軸に枝条率をとり図示すると第4図、第5図のとおりである。この図から明らかなとおり枝条率は胸高直径に従って増加する傾向が認められるが、この増加の傾向が直線、曲線の何れであるかが不明であるので、次の直線



第4図 胸高直径に対する枝条率 【型(サワグルミ,その他広)



第5図 胸高直径に対する枝条率 『型(ブナ,その他広)

式、曲線式によって検定を試みる。

$$Y = a + bX_1 \tag{8}$$

$$Y = a + bX_1 + cX_2 \tag{9}$$

ただし、 Y; 枝条率,  $X_1$ ; 胸高直径,  $X_2$ ; 胸高直径の平方 a, b, c, 常数

今資料を二樹種型毎にそれぞれ(8),(9)式をあてはめ回帰係数,推定誤差,相関係数を求めると次のと おりである。

積和,平方和等

| 区 | 分 | 本数  | $Sx_1^2$   | $Sx_2^2$      | Sy2        | $Sx_1x_2$    | Sx <sub>1</sub> y | $Sx_2y$      |
|---|---|-----|------------|---------------|------------|--------------|-------------------|--------------|
| I | 型 | 97  | 41,455.21  | 3,454,896.97  | 15,369.84  | 367,473.70   | 11,755.48         | 104,996.48   |
| I | 型 | 652 | 216,710.49 | 13,889,246.71 | 193,647.20 | 1,655,005.19 | 136,337.68        | 1,023,445.54 |

#### 回帰係数、推定誤差の分散、相関係数等

#### (8) 式の場合

| 区 | 分 | 本 数 | ь       | $\hat{S}\hat{y}^2$ | $Sdy \cdot x_1^2$ | $sy \cdot x_1^2$ | r       |
|---|---|-----|---------|--------------------|-------------------|------------------|---------|
| I | 型 | 9'  | 0.28357 | 3,333.51           | 12,036.33         | 126.69821        | 0.46571 |
| I | 型 | 65  | 0.62912 | 85,773.25          | 107,873.95        | 165.95992        | 0.66553 |

#### (9) 式の場合

| 区 | 分 | ь       | С       | Sŷ²       | $Sdy \cdot x_1 x_2^2$ | $sy \cdot x_1 x_2^2$ | R       |
|---|---|---------|---------|-----------|-----------------------|----------------------|---------|
| I | 型 | 0.24776 | 0.00358 | 3,288.24  | 12,081.60             | 128.52766            | 0.46254 |
| I | 型 | 0.73678 | 0.01427 | 85,849.68 | 107,797.52            | 166.09787            | 0.66583 |

#### a. 枝条率式の曲線性の検定

前項において求めた直線式、曲線式による推定誤差の分散および相関係数より見ると、「型は直線式によ る場合は推定誤差の分散が小さく、かつ相関係数も大きいので、明らかに8式が適合することが認められる が、■型の樹種は曲線式による方が誤差分散にほとんど差がなく且つ相関係数も若干大であり、その差は小 さい、この差が直線性から有意なものであるか否かによつて 直線、 曲線のいずれによるべきか決るのであ る。すなわち, (9) 式は (8) 式に X₂=D² 項を加えたものであり,この項の増加によつて回帰に曲線式を用 いた効果が有意な差として認められるかどうかを検定する。

### 分散分析表

| 変 動 因     | 自由度 | 平方和        | 平均平方   |
|-----------|-----|------------|--------|
| 直線回帰からの偏差 | 650 | 107,873.95 |        |
| 曲線からの偏差   | 649 | 107,797.52 | 166.10 |
| 回帰の曲線性    | 1   | 76.43      | 76.43  |

 $F=4.6014 < F_{0.05}=254$  d.f, 649, 1

この分析表によつて明らかなとおり回帰式に 🛂 を加えても(曲線性)有意差は認められず,推定式は直 線、曲線のいずれの式によつても大差がないので、ここでは計算の簡便な(8)式によつて樹型の差を検討

することにした。

#### 2. 資料の吟味

幹材積の場合と同様枝糸量測定においても資料には異常標本の測定値、または計算誤差による異常値が考えられるので、これ等の異常値を次の方法で除いた。

(8) 式によつて求めた計算値(第4図,第5図の中央の波線)からの有意水準5%の乗却帯(同図両側の鎖線)を次式によつて求め、この鎖線外に出るものを乗却する。

$$y'' = t \cdot s_{y \cdot x} \left(1 - \frac{1}{n} - \frac{x}{Sx^2}\right)^{\frac{1}{2}} \tag{10}$$

ただし、y'': 棄却限界の値、t; Student の t 分布のtの値

x; 胸高直径の平均値からの偏差

sy•x;推定誤差の標準誤差

なお,この乗却帯の計算は直径 10cm 毎に計算して結んだもので,計算表は第17表のとおりであり,除かれた本数は【型では4本,】型では29本となり一覧表にすれば第18表のとおりである。

|    |   |   | 第 17 表 | 棄 | 却 | 帯 | 計 | 算 | 表 |
|----|---|---|--------|---|---|---|---|---|---|
| 1. | I | 型 |        |   |   |   | - |   |   |

| 胸高<br>直径 | Ŷ     | $(X-ar{X})$ | $(X-ar{X})^2$ | $\frac{(X - \bar{X})^2}{Sx^2} = a$ | $1-\frac{1}{n}-a$ | $\sqrt{1-\frac{1}{n}-a}$ | $y'' = t \cdot s_y \cdot \sqrt{1 - \frac{1}{n} - a}$ | $\hat{Y}+y''$ | Ŷ-y"  |
|----------|-------|-------------|---------------|------------------------------------|-------------------|--------------------------|------------------------------------------------------|---------------|-------|
| 2        | 17.62 | -28.4598    | 809.9602      | 0.0195                             | 0.9702            | 0.9850                   | 22.0082                                              | 39.63         | -4.83 |
| 10       | 19.89 | -20.4598    | 418.6034      | 0.0101                             | 0.9796            | 0.9897                   | 22.1192                                              | 42.01         | 2.22  |
| 20       | 22.73 | 10.4598     | 109.4074      | 0.0026                             | 0.9871            | 0.9935                   | 22.1981                                              | 44.93         | 0.53  |
| 30       | 25.56 | 0.4598      | 0.2114        | 0                                  | 0.9897            | 0.9948                   | 22.2272                                              | 47.79         | 3.34  |
| 40       | 28.40 | 9.5402      | 91.0154       | 0.0022                             | 0.9875            | 0.9937                   | 22.2026                                              | 50.60         | 6.20  |
| 50       | 31.24 | 19.5402     | 381.8194      | 0.0092                             | 0.9805            | 0.9902                   | 22.1244                                              | 53.36         | 9.11  |
| 60       | 34.07 | 29.5402     | 872.6234      | 0.0210                             | 0.9687            | 0.9842                   | 21.9903                                              | 56.06         | 12.08 |
| 70       | 36.91 | 39.5402     | 1,563.4274    | 0.0377                             | 0.9520            | 0.9757                   | 21.8004                                              | 58.71         | 15.11 |
| 80       | 39.74 | 49.5402     | 2,454.0314    | 0.0592                             | 0.9305            | 0.9646                   | 21.5524                                              | 61.30         | 18.19 |
| 90       | 42.58 | 59.5402     | 3,545.0354    | 0.0855                             | 0.9042            | 0.9509                   | 21.2463                                              | 63.83         | 21.33 |
| 100      | 45.42 | 69.5402     | 4,835.8394    | 0.1167                             | 0.8730            | 0.9343                   | 20.8754                                              | 66.29         | 24.54 |

| 2.       | I     | 型           |                       |                                  |                   |                          |                                                            |               |        |
|----------|-------|-------------|-----------------------|----------------------------------|-------------------|--------------------------|------------------------------------------------------------|---------------|--------|
| 胸高<br>直径 | Ŷ     | $(X-ar{X})$ | $(X\!\!-\!\!ar{X})^2$ | $\frac{(X-\bar{X})^2}{Sx^2} = a$ | $1-\frac{1}{n}-a$ | $\sqrt{1-\frac{1}{n}-a}$ | $y'' = t \cdot s_{y \cdot x_1} \sqrt{1 - \frac{1}{n} - a}$ | $\hat{Y}+y''$ | Ŷ-y"   |
| 2        | 13.56 | 26.3271     | 693.1162              | 0.0032                           | 0.9953            | 0.9977                   | 25.2441                                                    | 38.80         | 11.68  |
| 10       | 18.59 | 18.3271     | 335.8826              | 0.0016                           | 0.9969            | 0.9984                   | 25.2619                                                    | 43.85         | - 6.67 |
| 20       | 24.88 | - 8.3271    | 63.3406               | 0.0003                           | 0.9982            | 0.9991                   | 25.2796                                                    | 50.16         | 0.39   |
| 30       | 31.17 | 1.6729      | 2.7986                | 0                                | 1.0000            | 1.0000                   | 25.3023                                                    | 56.48         | 5.87   |
| 40       | 37.47 | 11.6729     | 136.2566              | 0.0006                           | 0.9979            | 0.9989                   | 25.2745                                                    | 62.74         | 12.19  |
| 50       | 43.76 | 21.6729     | 469.7146              | 0.0022                           | 0.9963            | 0.9981                   | 25.2543                                                    | 69.01         | 18.50  |
| 60       | 50.05 | 31.6729     | 1,003.1726            | 0.0046                           | 0.9939            | 0.9969                   | 25.2239                                                    | 75.27         | 24.82  |
| 70       | 56.34 | 41.6729     | 1,736.6306            | 0.0080                           | 0.9905            | 0.9952                   | 25.1809                                                    | 81.52         | 31.16  |
| 80       | 62.63 | 51.6729     | 2,670.0886            | 0.0123                           | 0.9862            | 0.9931                   | 25.1278                                                    | 87.76         | 37.50  |
| 90       | 68.92 | 61.6729     | 3,803.5466            | 0.0176                           | 0.7809            | 0.9904                   | 25.0594                                                    | 93.98         | 43.86  |
| 100      | 75.21 | 71.6729     | 5,137.0046            | 0.0237                           | 0.9748            | 0.9873                   | 24.9810                                                    | 100.19        | 50.23  |

摘要 Ŷ;計算値、ッ";有意水準5%の限界

### 青森営林局広葉樹立木材積表調製説明書

第 18 表

### 乗 却 木 一 覧 表

1. 】 型

| 胸高直径       | 樹高        | 幹 材 積        | 枝条率  | 同計算值 | 樹    | 種 | 紅  | 営 区 | 番 号 |
|------------|-----------|--------------|------|------|------|---|----|-----|-----|
| cm<br>22.0 | m<br>15.3 | m³<br>0.2638 | 51.3 | 23.3 | ヤチダ  | モ | 自  | 石   | 42  |
| 27.0       | 22.4      | 0.5052       | 49.5 | 24.7 | サワグル | ŧ | 栗  | 駒   | 28  |
| 33.3       | 22.7      | 0.7136       | 54.1 | 26.5 | ホホノ  | キ | 如近 | 神   | 4   |
| 59.5       | 26.6      | 2.0816       | 59.4 | 33.9 | "    |   | 大  | 畑   | 19  |
|            | 1         |              |      |      |      |   | 1  |     |     |

# 2. 【 型

| 胸高直径       | 樹高        | 幹材積    | 枝条率       | 同計算值      | 樹      | 種    | 経  | 営 区      | 番号          |
|------------|-----------|--------|-----------|-----------|--------|------|----|----------|-------------|
| cm<br>14.7 | m<br>13.7 | 0.1020 | %<br>48.1 | %<br>21.5 | 1 8    | ャ    | 自  | ———<br>Æ | 81          |
| 15.4       | 11.7      | 0.0991 | 49.2      | 22.0      | 7      | IJ   | 石  | <b>差</b> | ·           |
| 16.3       | 15.0      | 0.1302 | 50.6      | 22.6      | ブ      | ナ    | 栗  | 影        | <b>1</b>    |
| 18.2       | 14.8      | 0.1530 | 55.9      | 23.8      | イヌブ    | ナ    |    | . //     | 27          |
| 18.8       | 17.0      | 0.1907 | 51.4      | 24.1      | 1 2    | t    |    | "        | 39          |
| 20.8       | 14.4      | 0.2230 | 56.8      | 25.4      | ミヅナ    | ラ    |    | "        | 64          |
| 21.0       | 15.2      | 0.2133 | 66.8      | 25.5      | "      |      | 大  | 灯        | 1 20        |
| 21.0       | 11.2      | 0.1345 | 57.7      | 25.5      | "      |      | 自自 | 7        |             |
| 22.0       | 13.5      | 0.2776 | 57.3      | 26.1      | ブ      | +    | 蓬  | Ħ        | .           |
| 31.2       | 20.9      | 0.5964 | 61.5      | 31.9      | 1 9    | ヤ    | 田田 | Ц        | 1 18        |
| 31.5       | 22.6      | 0.7152 | 63.4      | 32.1      | ブ      | ナ    |    | ,,       | 5           |
| 33.3       | 22.0      | 0.7580 | 59.8      | 33.3      | オノオレカン | / ); | 岩  | 与        | ξ 53        |
| 34.0       | 20.0      | 0.6572 | 77.0      | 33.7      | ミヅナ    | ラ    | 大  | 灯        | 25          |
| 36.8       | 20.7      | 0.8372 | 70.9      | 35.5      | オノオレカン | /バ   | 岩  | 身        | ξ 45        |
| 38.4       | 24.2      | 1.0100 | 74.9      | 36.5      | ₹ "Y"  | ×    | 宮  | <u>l</u> | 12          |
| 38.6       | 20.4      | 0.8406 | 78.4      | 36.6      | モミ     | ジ    | 大  | 灯        |             |
| 41.3       | 20.0      | 0.9944 | 70.5      | 38.3      | ミヅナ    | ラ    | 岩  | 身        | 9 ع         |
| 52.2       | 21.6      | 1.8691 | 74.4      | 45.1      | オノオレカン | / パ  |    | "        | 37          |
| 52.5       | 23.3      | 1.8376 | 75.7      | 45.3      | ブ      | ナ    | 白  | 7:       | i 16        |
| 54.4       | 28.0      | 2.9204 | 18.2      | 46.5      | "      |      | 水  | Ð        | ₹ 20        |
| 55.1       | 30.3      | 3.1172 | 19.0      | 47.0      | ケヤ     | +    | 岩  | 身        | <b>ξ</b> 57 |
| 55.4       | 24.1      | 1.8359 | 93.9      | 47.2      | +      | チ    | 姫  | 本        | 12          |
| 56.1       | 23.9      | 2.3806 | 92.3      | 47.6      | ブ      | ナ    | 田  | نر       | 1 13        |
| 60.2       | 22.4      | 2.3694 | 77.5      | 50.2      | ミップ ナ  | ラ    |    | "        | 2           |
| 63.0       | 22.5      | 2.5400 | 79.0      | 51.9      | "      |      |    | "        | 11          |
| 66.2       | 26.1      | 4.1392 | 23.8      | 53.9      | ブ      | ナ    | 水  | ŧ)       | र 4         |
| 76.8       | 30.0      | 5.3408 | 26.0      | 60.6      | ۲      | チ    | 栗  | 野        | j 25        |
| 81.0       | 28.3      | 4.3354 | 102.0     | 63.3      | 1 3    | ヤ    | 姫  | 本        | 25          |
| 88.6       | 31.0      | 7.8486 | 35.8      | 68.6      | ŀ      | チ    | 岩  | 身        | į 54        |

なお、棄却後の直径階別平均枝条率は第19表のとおりである。

第 19 表

直径階別本数および平均枝条率 (棄却後)

| <b>版</b> 古古汉            |   | Ī                     |                                      | 型                                    |   | I                          |                                      | 型                                    |
|-------------------------|---|-----------------------|--------------------------------------|--------------------------------------|---|----------------------------|--------------------------------------|--------------------------------------|
| 胸高直径                    | 本 | 数                     | 平均直径                                 | 平均枝条率                                | 本 | 数                          | 平均直径                                 | 平均枝条率                                |
| cm<br>4<br>6<br>8<br>10 |   | 1<br>1<br>5<br>5      | 4.8<br>6.9<br>7.9<br>9.9             | 9.1<br>15.9<br>19.8<br>18.5          |   | 2<br>23<br>31<br>46        | 4.3<br>6.2<br>7.8<br>10.0            | 12.5<br>16.0<br>12.6<br>19.4         |
| 2<br>4<br>6<br>8<br>20  |   | 5<br>6<br>6<br>7      | 12.1<br>14.1<br>16.1<br>17.6<br>20.0 | 17.5<br>28.5<br>21.9<br>20.2<br>21.5 |   | 45<br>39<br>33<br>34<br>32 | 11.9<br>14.0<br>16.0<br>17.8<br>20.0 | 18.3<br>19.8<br>21.8<br>24.8<br>27.3 |
| 2<br>4<br>6<br>8<br>30  |   | 4<br>4<br>2<br>3<br>5 | 21.8<br>24.1<br>25.6<br>28.0<br>30.1 | 24.4<br>25.3<br>18.7<br>24.8<br>20.8 |   | 27<br>26<br>25<br>20<br>17 | 22.0<br>23.7<br>25.7<br>27.8<br>30.1 | 25.5<br>26.0<br>26.5<br>29.0<br>31.2 |
| 2<br>4<br>6<br>8<br>40  |   | 2<br>2<br>4<br>—      | 32.6<br>33.0<br>35.8<br><br>40.2     | 19.0<br>29.6<br>21.7<br>—<br>18.0    |   | 21<br>14<br>17<br>20<br>10 | 32.0<br>34.0<br>36.0<br>38.0<br>39.9 | 32.3<br>31.3<br>30.0<br>37.1<br>34.5 |
| 2<br>4<br>6<br>8<br>50  |   | 3<br>1<br>2<br>1<br>4 | 42.0<br>43.4<br>45.8<br>48.9<br>49.7 | 30.0<br>16.9<br>47.2<br>29.5<br>20.7 |   | 22<br>11<br>13<br>8<br>12  | 42.2<br>43.9<br>46.1<br>47.4<br>50.1 | 36.7<br>34.6<br>40.8<br>35.1<br>44.1 |
| 2<br>4<br>6<br>8<br>60  |   | 1<br>1<br>-<br>1      | 51.4<br>53.0<br>-<br>57.5            | 20.7<br>11.6<br>—<br>38.0            |   | 15<br>10<br>2<br>6<br>8    | 52.1<br>64.9<br>55.7<br>57.7<br>59.5 | 36.3<br>57.1<br>62.2<br>37.6<br>55.3 |
| 2<br>4<br>6<br>8<br>70  |   | 1<br>1<br>1<br>1      | 64.5<br>66.9<br>67.4<br>69.2         | 48.1<br>37.9<br>30.7<br>29.3         |   | 2<br>5<br>4<br>2<br>4      | 62.2<br>63.8<br>65.5<br>67.7<br>69.9 | 41.0<br>54.3<br>54.5<br>66.3<br>52.1 |
| 2<br>4<br>6<br>8<br>80  |   | 1<br>1<br>-<br>-<br>1 | 72.5<br>74.5<br>—<br>79.7            | 20.1<br>45.4<br>—<br>—<br>56.3       |   | 4<br>1<br>2<br>2           | 71.9<br>73.2<br>76.3<br>77.6         | 61.2<br>51.1<br>62.9<br>55.9         |
| 2<br>4<br>6<br>8<br>90  |   | 1<br>-<br>-<br>-      | 81.1<br>—<br>—<br>—<br>—             | 48.8<br>—<br>—<br>—<br>—             |   | _<br>_<br>_<br>_           | 83.7<br>—<br>—<br>—                  | 70.1                                 |
| 2<br>4<br>6<br>8<br>100 |   | 1<br>-<br>-           | 91.5<br>—<br>—<br>—<br>—             | 33.1<br>—<br>—<br>—<br>—             |   | 2<br>—<br>—                | 96.3<br>—<br>—<br>—<br>—             | 71.5                                 |
| 2<br>4                  |   |                       | 103.1                                | 50.0                                 |   | 1<br>1                     | 102.2<br>103.5                       | 85.2<br>70.5                         |

#### 3. 「, 『型間の差の検定

棄却された資料を除いて平方和、積和、回帰係数等を計算すれば次のとおりである。

| 区 | 分 | 本数  | $Sx^2$     | Sxy        | $Sy^2$     | $Sdy \cdot x^2$ | sy•x2       | sy•x       | ь       | r       |
|---|---|-----|------------|------------|------------|-----------------|-------------|------------|---------|---------|
| I | 型 | 93  | 40,515.99  | 10,971.01  | 12,070.67  | 9,099.92        | 99,999.121  | 9,999.956  | 0.27078 | 0.49610 |
| N | 型 | 623 | 198,820.24 | 122,878.14 | 152,875.38 | 76,932.22       | 123,884.412 | 11,130.347 | 0.61804 | 0.70482 |

#### a. 回帰係数の有意性の検定

回帰係数が0と有意差があるか否かを t 検定によって検定すれば次のとおりである。

| 区 | 分 | ь       | sb <sup>2</sup> | t            | d•f |
|---|---|---------|-----------------|--------------|-----|
| I | 型 | 0.27078 | 0.002468        | 5.4506<br>** | 91  |
| I | 型 | 0.61804 | 0.000623        |              | 621 |

tetil  $s_b^2 = sy \cdot x^2/Sx^2$ ,  $t = b/s_b$ 

この表により明らかなとおりたの値が著しく有意で、この関係の回帰が有用であることが明らかである。

#### b. 相関係数の有意性の検定

検定の結果は次のとおりである。

| <br>区      | 分  | d.f       | r                  | t  |
|------------|----|-----------|--------------------|----|
| <br>I<br>N | 型型 | 91<br>621 | 0.49610<br>0.70482 | ** |

ただし 
$$t=r\sqrt{\frac{n-2}{1-r^2}}$$

上表によってたの値が有意で明らかに相関関係が成立することが認められる。

- c. 「, | 型間の回帰係数の有意差の検定
  - i. 分散の一様性の検定

幹材積の樹種群の検定と同様分散の一様性を検定すれば

| 区 | 分 | 自由度 | 平方    | 和    | 平均平方       |
|---|---|-----|-------|------|------------|
| I | 型 | 91  | 9,09  | 9.92 | 99.999121  |
| I | 型 | 621 | 76,93 | 2.22 | 123.884412 |

$$F=1.2389 < F_{0.025}=1.37$$

d.f, 621, 91

有意差なし,

- ii. 回帰係数間の差の検定
- (i) において分散が一様であることが明らかとなつたから、【型、【型の回帰係数間の差を検定する。
  - 二樹種型の平方和、積和および回帰からの偏差の平方和を合計して

$$\sum Sx^2 = 239,336.23$$

 $\sum Sxy = 133,849.15$ 

 $\sum Sy^2 = 164,946.05$ 

 $\sum Sdy \cdot x^2 = 86,032.14$ 

この値から平均的な回帰係数および回帰による平方和を求めると

b=0.559252

 $S\hat{y}^2 = 74,855.40$ 

完成した分散分析表

| 変 | 助 | 因 | 自由度 | 平 | 方     | 和      | 平均平方     |
|---|---|---|-----|---|-------|--------|----------|
| 全 | 回 | 帰 | 1   |   | 74,8  | 355.40 |          |
| 回 | 帰 | 間 | 1   |   | 4,0   | 058.51 | 4,058.51 |
| 口 | 帰 | 計 | 2   |   | 78,9  | 913.91 |          |
| 誤 |   | 差 | 712 |   | 86,0  | 32.14  | 120.83   |
|   | 計 |   | 714 |   | 164,9 | 946.05 |          |

 $F=33.5886**>F_{0.05}=3.85$ 

d.f, 1, 712

この検定の結果【型と、】型とは回帰係数に差が認められるので別々に枝条率を求めねばならない。

iii. 4-50cm の回帰係数間の差の検定

(ii) において全径級を一括した場合に差が認められたが胸高直径 50cm までの資料によつて検定して見る。

50cm 以下の資料において二樹種型の平方和,積和,回帰からの偏差の平方和を合計して

 $\sum Sx^2 = 92,212.95$ 

 $\sum Sxy = 43,818.28$ 

 $\sum Sv^2 = 71,654.25$ 

 $\sum Sdyx^2 = 49,743.49$ 

この値から6及び回帰による平方和を求めると

b' = 0.475186

 $S\hat{y}^2 = 20,821.83$ 

完成した分散分析表

| 変  | 動 | 因 | 自由度 | 平 | 方    | 和      | 平 | 均平 | 艺方     |
|----|---|---|-----|---|------|--------|---|----|--------|
| 全. | 回 | 帰 | 1   |   | 20,8 | 321.83 |   |    |        |
| 回  | 帰 | 間 | 1   |   | 1,0  | 088.93 |   | 1, | 088.93 |
|    | 帰 | 計 | 2   |   | 21,9 | 910.76 |   |    |        |
| 誤  |   | 剎 | 606 |   | 49,7 | 743.49 |   |    | 82.08  |
|    | 計 |   | 608 |   | 71,6 | 554.25 |   |    |        |
|    |   |   |     |   |      |        |   |    |        |

 $F=13.2667**>F_{0.05}=3.85$ 

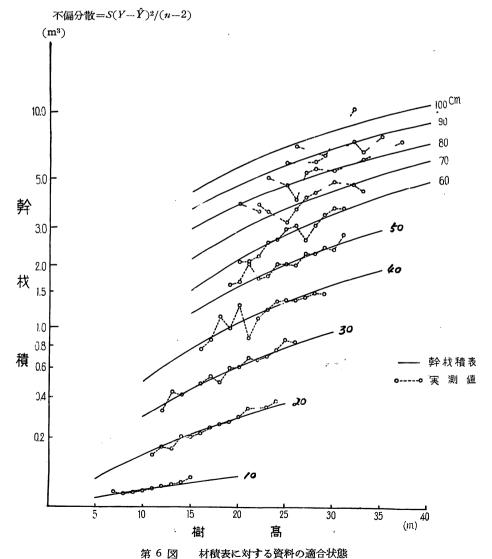
d.f, 1, 606

有意差あり,

したがって 50cm 以下においても回帰係数間に差が認められるので 【型、 【型は個々の推定式によらなければならない。

#### 4. 枝条率計算式の決定

校条量を測定した 749 本の資料を二樹種型に分類し、胸高直径に対する枝条率の関係を検討した結果両型とも直線関係にあり、両者の回帰係数間には有意な差が認められ、それぞれの型の推定式によって枝条率を推定しなければならないが、この二式によって求める枝条率は、【型が一般に小さい値を示すが胸高直径 20cm 以下ではほとんど近似し、胸高直径 12cm 以下では反対に【型の方が大となる。 一般に小型級では樹型による差が判明しないので検定の結果により胸高直径 12cm 以下は 【型の推定式によって求めることにした。


なお、本調査において管内に分布する各樹種にわたつて資料を集めることが不可能であつたので、調査されなかつた樹種でも【型と同類のものは【型を適用し、【型以外のものは】型を適用することは差支えないものと考える。

次に決定した推定式を示すと第19表のとおりである。

| 第19表 | 枝 | 答 | 率 | 推 | 定 | 77 |
|------|---|---|---|---|---|----|
|      |   |   |   |   |   |    |

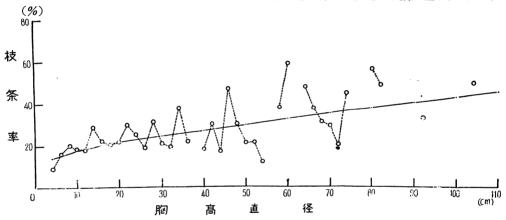
| 区 | 分 | 樹                                       | 種                  | 名                  | 推                | 定       | 式              | 不偏分散       | 標準誤差          |
|---|---|-----------------------------------------|--------------------|--------------------|------------------|---------|----------------|------------|---------------|
| I | 型 | サワグルミ,<br>キハダ, ヤチ<br>ヨウニレ, ア<br>ニガキ, ヤマ | ダモ, シウリ<br>サダ, ハルニ | ザクラ, オヒ<br>レ,トネリコ, | $\hat{Y}=16.3$   | 0477+0. | 27078 <i>X</i> | 99.615385  | ± 9.9808      |
| I | 型 | 【型以外の樹                                  | 極                  |                    | $\hat{Y} = 11.6$ | 0458+0. | 61804 <i>X</i> | 115.916742 | $\pm 10.7668$ |

ただし、【型において胸高直径 12cm 以下は 【型の推定式による。

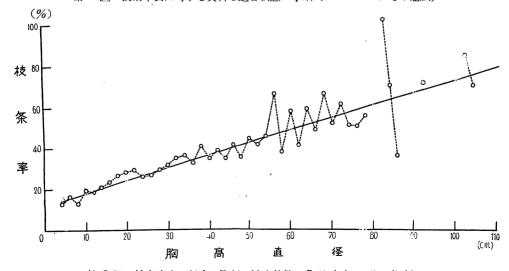


#### V 幹材積表, 枝条率表の資料に対する適合状態

#### 幹材積表


材積表としては、胸高直径および樹高が同一である種々の樹の平均材積に対して偏差が少ないもので満足しなければならない。また樹型の異る個々の樹に対し精密な値を示すことは不可能で、特に広葉樹のように 樹型が不定なものでは分散が大きいので少数の本数に対しては差を示すことがまぬがれない。

推定材積の資料に対する適合状態は各推定式の不偏分散、および標準誤差から明らかで胸高直径とともに 大となる。


今 10cm 毎の胸高直径階に対する樹高毎の平均幹材積(資料)と推定材積の関係を図示すれば、第 6 図のとおりで適合の状態が明らかである。

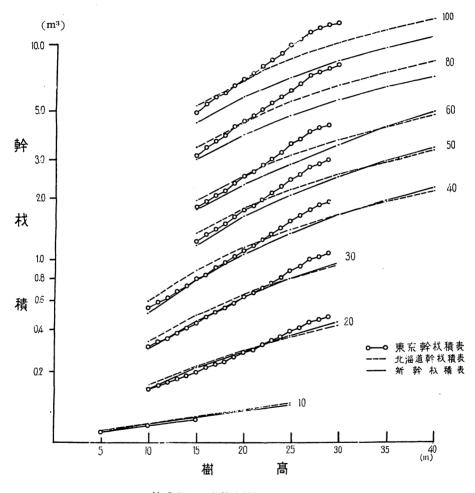
#### 2. 枝条率表

枝条率は幹材積よりも分散が大で、胸高直径階毎の平均枝条率に対する推定値の関係を図示すれば、第7



第7図 枝条率表に対する資料の適合状態 【型(サワグルミ,その他広)

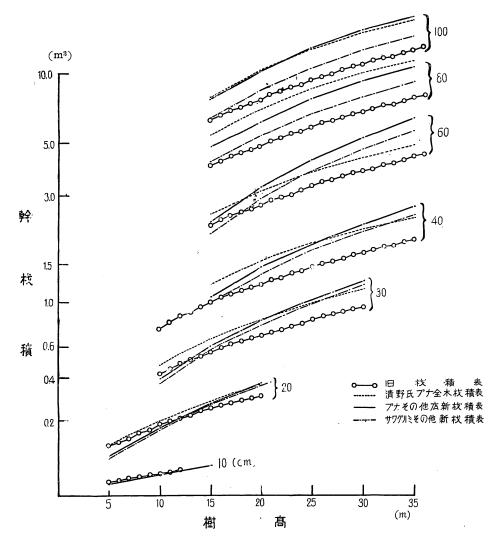



第8図 枝条率表に対する資料の適合状態 『型(ブナ,その他広)

図,第8図のとおりである。

### Ⅵ 他管内の材積表との比較

### 1. 幹材積表の比較


第9図のとおりである。



第9図 他管内幹材積表との比較

### 2. 全木材積表の比較

第10図のとおりである。



第10図 他の全木材積表との比較

### VII 幹材積表, 枝条率表使用上の注意

#### 1. 幹 材 積 表

- 1. この立木材積表は、青森営林局の広葉樹全般に対して適用するものである。
- 2. この立木材積表は、毎木の胸高直径(地上  $1.2~\mathrm{m}$ )、樹高を測定して幹材積を求めるものである。
- 3. 本表の材積は、次の材積方程式によって算出した値であり、直径級毎の推定式による推定値が前後と 不均衡になった値は図上で修正した。

| 胸高直径       | 材                            | 積       | 推       | 定           | 式            |
|------------|------------------------------|---------|---------|-------------|--------------|
| cm<br>4—10 | $\hat{Y} = \overline{5}.808$ | 340+1   | .846732 | $K_1 + 0.9$ | $92548X_2$   |
| 12—50      | $\hat{Y} = \overline{5}.635$ | 555 + 1 | .871352 | $K_1 + 1.6$ | $06862X_2$   |
| 52—70      | $\hat{Y} = \bar{5}.887$      | 766+1   | 638402  | $X_1 + 1.3$ | $17842X_{2}$ |
| 72—        | $\hat{Y} = \overline{4}.068$ | 586+1   | .757742 | $Y_1+0.9$   | $90300X_{2}$ |

注:この材積式は修正係数により修正したものである。

ただし  $\hat{Y} = \log \nu$  幹材積の対数  $X_1 = \log d$  胸高直径の対数  $X_2 = \log h$  樹高の対数

4. 本表以外の幹材積は 3.の材積式によつて求める。

#### 2. 枝条率表

- イ、本表は胸高直径を測つて枝条率(幹材積に対する枝条材積の100分率)を求めるものである。
- □、本表の数値は次の樹種区分によつて、胸高直径 14cm 以上は各樹型ごとの枝条率推定式によつて求めた値である。ただし、胸高直径 12cm 以下は樹種に関係なく、■型の推定式によつて求めた値である。

| 樹 | 型 | 樹        | 種         | 名                            | 推      | 定        | 式      |
|---|---|----------|-----------|------------------------------|--------|----------|--------|
| I | 型 |          | ウニレ, アサダ, | /キ,キハダ, ヤチダモ,<br>ハルニレ,ヤマナラシ, | P=16.3 | 0477+0.5 | 27078d |
| I | 型 | 【型以外の広葉樹 |           |                              | P=11.6 | 0458+0.4 | 41804d |

ただし、 P: 枝条率 (%), d: 胸高直径 (cm)

ハ、本表以外の枝条率は、 胸高直径 12cm 以下のものに対しては 『型の推定式, 胸高直径 14cm 以上は樹型別にそれぞれの推定式によつて求める。

#### ₩ 作成年月日および担当者職氏名

着 手 昭和28年6月 完 了 昭和30年7月

担当者職氏名

計画課長 片岡正二郎 郎主 査 齊 藤 栄 助係 員 山内 文 磨 同 五日市重男

む す び

青森営林局管内(青森,岩手,宮城)に分布する広葉樹2,277本の資料を用い推測統計法を利用して広葉 樹立木幹材積表を作成した。

- 1. 材積方程式は山本博士の用いた $v=ad^{b1}h^{b2}$ がよく適合することが認められた。
- 2. 幹材積において胸高直径 50cm 以下では樹種群別の有意差は認められない。

- 3. 管内の近似する個所を合併し三地域に分類して幹材積を比較した結果, 胸高直径 50cm 以下では地域別の有意差は認められない。
- 4. 幹材積推定式は直径級により差が認められ、全資料を一括したものよりの推定式を用いることが不可能で、4つの推定式に分れた。
- 5. 胸高直径に対する枝条率の関係は、直線の傾向が認められた。
- 6. 樹型による枝条率は有意差が認られるが、胸高直径 20cm 以下では差が認められない。

#### 引用並びに參考文献および通牒

- 1) 清 野 要: 主要樹種材種別材積表調製に関する研究 昭和11年 林業試験報告 35号
- 2) 林野庁長官: 主要閩種立木材積表調製資料測定要綱 昭和26年 林野 11,231号
- 3) 清野 要: ブナ単木材積表の調製方法について 昭和11年 林学会誌 18巻7号
- 4) 中島 広吉: 北海道濶葉閩標準材積表 大正14年 山林508号
- 5) 寺 崎 渡: しらかし, ぶな,くりの単木幹材積計算補助表並びに材積表 大正2年 林業試験報告 第10号
- 6) 近藤助: 濶葉樹川材林作業 昭和26年 朝倉書店
- 7) 山本 和蔵: あかまつの単木幹材積表並びに胸高形数表 大正7年 林業試験報告 第16号
- 8) 麻生 誠: からまつの単木材積表の調製 昭和8年 林業試験報告 第33号
- 9) 青森営林局: あかまつ単木幹材積表について 昭和16年 青森林友 6月号
- 10) 山本 和蔵: あかまつ枝糸量計算式の研究並びに計算補助表 大正3年 林業試験報告 第11号
- 11) 麻生 誠,清水清平: 本邦主要針楽樹の枝条重量表並びに枝条材積表の調製 昭和12年 林業試験 報告 第43号
- 12) 寺 崎 渡: ひばの単木幹材積表及び単木幹材材積計算補助表の改訂 大正9年 林業試験報告 第19号
- 13) 畑村, 準村, 奥野, 田中訳: スネデカー統計的方法 上, 下 昭和27年 岩波書店
- 14) W.E. デミング著,森口繁一訳: 推計学によるデータのまとめ方 昭和 26年 岩波書店
- 15) 吉田 正男: 測樹学要論 昭和5年 成美堂
- 16) 嶺 一三: 測樹 昭和27年 朝倉書店
- 17) 大友 栄松: 林業における統計的方法入門 昭和28年 林業講習所
- 18) 木梨 謙吉: 推計学を基とした測樹学 昭和29年 朝倉書店
- 19) 水島字三郎: 統計分析入門 昭和27年 養賢堂
- 20) 寺田 一彦: 推測統計法 昭和26年 朝倉書店
- 21) メーサー著,小川,山本訳: メーサー生物統計学 昭和30年 朝倉書店
- 22) 北林 友圭: 高等実用数学 昭和10年 高岡本店
- 23) 佐藤良一郎: 数理統計学概説 昭和25年 培風舘
- 24) 成実 清松: 統計解析の理論 昭和26年 朝倉書店
- 25) 石川 栄助: 実用近代統計学 昭和30年 槇書店
- 26) 丸善対数表: 昭和28年 丸善株式会社
- 27) バーローの数表: 昭和28年 森北出版株式会社
- 28) 林野庁長官: 収穫表並びに材積表調製に関する打合会(復命書) 昭和29年 林野9,660号
- 29) 林野庁林業試験場: 立木材積表調製要綱案 昭和30年 計67号
- 30) 大友 栄松: 材積表調製に関する研究(【) 昭和31年 日本林学会誌
- 31) 大友 栄松: 材積表の検定について 昭和31年 日本林学会誌
- 32) 林業試験場経営部: 経営部業務報告(Ⅱ) 昭和31年
- 33) 林業試験場経営部: 立木材積表調製法解説書 昭和31年

## 付表 1 表 調 査 地 の 林 況 一 覧 表

| 経        | 営    | 区    | 林小班                                                     | 地位 | 疎密度              | l           |                          | 林              | 况           |
|----------|------|------|---------------------------------------------------------|----|------------------|-------------|--------------------------|----------------|-------------|
| 蟹        |      | 田    | 55/1                                                    | 中  | 中                | { ヒバ 広      | 120m <sup>3</sup><br>100 | ヒバ,広,混交多層林     |             |
| 蓬        |      | 田    | 143                                                     | "  | "                | { ヒバ        | 160<br>50                | "              |             |
| 深        |      | 浦    | 78t·                                                    | "  | "                | L<br>広      | 220                      | ブナを主とする多層林     |             |
| 目        |      | 屋    | 86.                                                     | 上  | "                | ∫ヒバ         | 167                      | ヒバ,広,混交多層林     |             |
| 黒        |      | 石    | 32 <i>1</i> /2                                          | 中  | 密                | L<br>広      | 37<br>130                | ミヅナラを主とする多層    | 林           |
| 大        |      | 畑    | 821.                                                    | 上  | 中                | {ヒバ         | 150<br>180               | ヒバ,広,混交多層林     |             |
|          | "    |      | 144 Ն ֊                                                 | 中  | "                | { ヒバ<br>    | 160<br>50                | "              |             |
|          | "    |      | 132,                                                    | "  | 密                | L<br>広      | 250                      | ヒバ林上部のブナを主と    | する多層林       |
| +        | 和    | 田    | 86 <sub>1</sub> ,                                       | "  | 中                | "           | 240                      | ブナ、ミヅナラを主とす    | る多層林        |
| $\equiv$ |      | 戸    | 10 է չ                                                  | "  | "                | "           | 220                      | ブナを主とする多層林     |             |
| 田        |      | Щ    | 10132                                                   | "  | "                | "           | 300                      | "              |             |
| •        | "    | •    | 96.                                                     | "  | 密                | "           | 200                      | ブナ,ミヅナラを主とす    | る多属林        |
| 姫        |      | 神    | 334,                                                    | "  | "                | "           | 180                      | ミヅナラを主とする一齊    |             |
| 741-     | "    | IT   | 2831                                                    | "  | "                | "           | 250                      | ブナ、ミヅナラを主とす    |             |
| 雫        |      | 石    | 396.                                                    | "  | 中                | "           | 220                      | ブナ,ミヅナラを主とす    |             |
| 岩        |      | 崎    | 6L.                                                     | "  | Т //             | "           | 250                      | ノフ,ミッテンを主こり    | る夕僧小        |
|          |      |      | 1                                                       | "  |                  | "           | 225                      |                |             |
| 本        |      | 内    | 29/1                                                    |    | 密                |             |                          | "              |             |
| 水        |      | 沢    | 833                                                     | ,  | 疎                | "           | 170                      |                |             |
|          | "    | 88   | 756                                                     | 上  | 密                | "           | 270                      | ブナを主とする多層林     |             |
|          |      | 関    | 25ろ                                                     | 中  | "                | "           | 40                       | クリ、コナラを主とする    | 壮令一齊林       |
|          | 11   |      | 5 <sub>\(\cdot\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\</sub> | "  | "                | "           | 60                       | "              |             |
| 久        |      | 慈    | 56l v <sub>3</sub>                                      | "  | 中                | "           | 210                      | ブナ、ミヅナラを主とす    | る多層林        |
| 岩        |      | 泉    | 176、                                                    | "  | 密                | "           | 150                      | ミヅナラ、ブナを主とす    | る多層林        |
|          | "    |      | 96،                                                     | "  | "                | (7)         | 180                      | ル 壮令一齊         | 林           |
| 門        |      | 馬    | 71ろ                                                     | "  | 中                | {アカマ<br>  広 | 90                       | アカマツ,広,混交多層    | 林           |
|          | "    |      | 83∤⊂                                                    | "  | "                | 広           | 100                      | ミヅナラ,ブナを主とす    | る多層林        |
|          | "    |      | 83/4                                                    | "  | "                | "           | 130                      | "              |             |
|          | "    |      | 80 <sub>V</sub> \                                       | "  | 密                | "           | 160                      | ミヅナラ,カンバを主と    | する多層林       |
|          | "    |      | 44 L v                                                  | "  | 中                | "           | 220                      | ブナ、トチを主とする多    | 層林          |
| 宮        |      | 占    | 70は                                                     | "  | 疎                | "           | 180                      | イヌブナ,コナラを主と    | する多層林       |
| 遠        |      | 野    | 97t.                                                    | "  | F <sup>†</sup> 1 | "           | 210                      | "              |             |
|          | "    |      | 46vz                                                    | 11 | "                | "           | 180                      | <i>"</i>       |             |
| 釜        |      | 石    | 64 L V                                                  | "  | "                | "           | 100                      | "              |             |
|          | "    |      | 61, 12                                                  | "  | "                | "           | 70                       | コナラ、クリ壮令一齊林    |             |
| 大        |      | 渡    | 421.                                                    | "  | 疎                | "           | 25                       | クリを主とする壮令一齊    |             |
| 石        | 7964 | 巻    | 153 է չ                                                 | "  | 密                | "           | 40                       | クリ、コナラ、クヌギを    |             |
|          | "    | L    | 563                                                     | "  | "                | "           | 85                       | コナラ、クリを主とする    |             |
|          | "    |      | 56½                                                     | "  | 疎                | "           | 20                       | ユリン, クリを主こりる   | 1177一月7     |
|          | "    |      | 63 <sub>1</sub> Z                                       | "  |                  |             | 50                       | •              |             |
| 栗        | "    | 駒    | 51k2                                                    |    | 密                | "           | 80                       | //<br>たりせったしナフ | ルム . 流 4-4・ |
| *        |      | 유미   |                                                         | "  | 疎                |             | j                        | コナラ、クリを主とする    |             |
| F        | "    |      | 39 l ·                                                  | "  | 密                | "           | 250                      | ブナ、トチを主とする多    | <b>門</b>    |
| 岳        |      | 山    | 291.                                                    | "  | "                | "           | 250                      | ブナを主とする多層林     |             |
| 白        |      | 石    | 50ろ                                                     | "  | 中                | "           | 260                      | //             | المحتدد     |
|          | "    | -34- | 107/3                                                   | "  | 密                | "           | 40                       | コナラ、クリを主とする    |             |
| 加        |      | 美    | 49 <sub>1</sub> / <sub>C</sub>                          | "  | 中                | "           | 190                      | ブナ,ミヅナラを主とす    | る多層林        |

### 材積表調製業務資料 第1号

附表 2 表

直径階別,樹高階別,平均材積 (全本数)

| 胸 高直径階    | 樹高<br>階  |          |                      | 胸 高直径階   | 樹高<br>階  | 本数 | 平 均<br>幹材積               | 胸 高直径階 | 樹高<br>階  | 本数      | 平 均幹材積                    | 胸 高直径階 | 樹高<br>階  | 本数  | 平 均<br>幹材積       |
|-----------|----------|----------|----------------------|----------|----------|----|--------------------------|--------|----------|---------|---------------------------|--------|----------|-----|------------------|
| cm  <br>4 | m<br>4   | 本 6      | $\frac{m^3}{0.0026}$ | cm<br>14 | m<br>8   | 本2 | m <sup>3</sup><br>0.0505 | cm     | m<br>14  | 本<br>15 | $\frac{{ m m}^3}{0.2051}$ | cm     | m<br>28  | 本1  | m³<br>0.6972     |
| -         | 5        | 19       | 0.0038               | 11       | 9        | 2  | 0.0677                   |        | 15       | 10      | 0.2018                    |        | 20       | 1   | 0.0912           |
|           | 6        | 11       | 0.0048               |          | 10       | 3  | 0.0719                   |        | 16       | 16      | 0.2196                    |        |          |     |                  |
|           | 7        | 7        | 0.0058               |          | 11       | 11 | 0.0758                   |        | 17       | 10      | 0.2414                    | 26     | 12       | 2   | 0.2749           |
|           | 8        | 5        | 0.0072               |          | 12       | 15 | 0.0873                   | '      | 18       | 11      | 0.2587                    | 20     | 13       | 1   | 0.3216           |
|           |          |          |                      |          | 13       | 17 | 0.0941                   |        | 19       | 19      | 0.2694                    |        | 14       | 7   | 0.3131           |
| 6         | 5        | 2        | 0.0071               |          | 14       | 27 | 0.0978                   |        | 20       | 5       | 0.2912                    |        | 15       | 1   | 0.3568           |
|           | 6        | 12       | 0.0102               |          | 15       | 14 | 0.1112                   |        | 21       | 1       | 0.3371                    |        | 16       | _   |                  |
|           | 7        | 24       | 0.0103               |          | 16       | 12 | 0.1142                   |        | 22       |         |                           |        | 17       | 5   | 0.3928           |
|           | 8        | 27       | 0.0126               |          | 17       | 5  | 0.1386                   |        | 23       | 1       | 0.3411                    |        | 18       | 6   | 0.4082           |
|           | 9        | 13       | 0.0131               |          | 18       | 2  | 0.1475                   |        | 24       | 2       | 0.3788                    |        | 19       | 4   | 0.4075           |
|           | 10       | 9        | 0.0167               |          |          |    |                          |        |          |         |                           |        | 20       | 8   | 0.4543           |
|           | 11       | 3        | 0.0188               | 16       | 9        | 1  | 0.0853                   | 22     | 11       | 1       | 0.1345                    |        | 21       | 14  | 0.4763           |
|           |          |          |                      |          | 10       | 2  | 0.0763                   |        | 12       | 2       | 0.2236                    |        | 22       | 5   | 0.5093           |
| 8         | 6        | 2        | 0.0149               |          | 11       | 4  | 0.1094                   |        | 13       |         | •                         |        | 23       | 3   | 0.5601           |
|           | 7        | 12       | 0.0167               |          | 12       | 9  | 0.1124                   |        | 14       | 7       | 0.2350                    |        | 24       | 6   | 0.5943           |
|           | 8        | 15       | 0.0189               |          | 13       | 17 | 0.1207                   | l      | 15       | 9       | 0.2406                    |        | 25       | 1   | 0.4646           |
|           | 9        | 25       | 0.0233               |          | 14       | 21 | 0.1281                   |        | 16       | 10      | 0.2652                    |        |          |     |                  |
|           | 10       | 22       | 0.0241               |          | 15       | 14 | 0.1340                   |        | 17       | 9       | 0.2336                    | 28     | 10       | 1   | 0.1912           |
|           | 11       | 9        | 0.0283               |          | 16       | 13 | 0.1490                   |        | 18       | 11      | 0.3045                    |        | 11       |     |                  |
|           | 12       | 3        | 0.0305               |          | 17       | 13 | 0.1560                   |        | 19       | 8       | 0.3204                    |        | 12       | 1   | 0.2746           |
|           | 13       | 4        | 0.0319               |          | 18       | 5  | 0.1687                   |        | 20       | 11      | 0.3339                    |        | 13       |     |                  |
|           | 14       | 1        | 0.0326               |          | 19       | 2  | 0.1585                   |        | 21       | 5       | 0.3860                    |        | 14       | 5   | 0.3980           |
|           |          |          |                      |          | 20       |    |                          |        | 22       | 8       | 0.3953                    |        | 15       | 2   | 0.4062           |
| 10        | 7        | 4        | 0.0324               |          | 21       | 1  | 0.2081                   |        | 23       | 2       | 0.4001                    |        | 16       | 2   | 0.4104           |
|           | 8        | 7        | 0.0294               |          |          |    |                          |        | 24       | 2       | 0.4173                    |        | 17       | 8   | 0.4265           |
| Ì         | 9        | 11       | 0.0337               | 18       | 11       | 4  | 0.1260                   |        |          |         |                           |        | 18       | 12  | 0.4708           |
|           | 10       | 20       | 0.0360               |          | 12       | 4  | 0.1363                   | 24     | 12       | 3       | 0.2414                    |        | 19       | 6   | 0.4930           |
|           | 11       | 21       | 0.0410               |          | 13       | 8  | 0.1469                   |        | 13       | 2       | 0.2361                    |        | 20       | 5   | 0.5164           |
|           | 12       | 21       | 0.0462               |          | 14       | 14 | 0.1602                   |        | 14       | 5       | 0.2883                    |        | 21       | 5   | 0.5656           |
|           | 13       | 10       | 0.0505               |          | 15       | 18 | 0.1633                   |        | 15       | 5       | 0.3036                    |        | 22       | 9   | 0.5909           |
|           | 14       | 7        | 0.0558               |          | 16       | 11 | 0.1882                   |        | 16       | 7       | 0.2972                    |        | 23       | 6   | 0.6171           |
|           | 15       | 1        | 0.0698               |          | 17       | 19 | 0.1956                   |        | 17       | 10      | 0.3280                    |        | 24       | 7   | 0.6568           |
| 10        |          |          |                      |          | 18       | 15 | 0.2092                   |        | 18       | 9       | 0.3247                    |        | 25       | 1   | 0.7832           |
| 12        | 9        | 2        | 0.0425               |          | 19       | 6  | 0.2199                   |        | 19       | 10      | 0.3640                    |        | 26       | 1   | 0.6940           |
|           | 10       | 14       | 0.0436               |          | 20       | 2  | 0.2740                   |        | 20       | 14      | 0.3941                    |        | 27       | 1   | 0.7574           |
|           | 11<br>12 | 20       | 0.0612               |          | 21       | -  | 0.0076                   |        | 21       | 7       | 0.4183                    | 00     | 10       |     | 0 0000           |
|           | 13       | 14<br>20 | 0.0648               |          | 22<br>23 | 1  | 0.2376<br>0.2401         |        | 22<br>23 | 5<br>2  | 0.4819                    | 30     | 12<br>13 | 1 1 | 0.3222           |
|           | 13       | 15       | 0.0732               |          | 43       | 1  | 0.2401                   |        | 23       | 1       | 0.4426<br>0.4716          |        | 13       | 1   | 0.4324<br>0.4170 |
|           | 15       | 9        | 0.0733<br>0.0828     | 20       | 11       | 1  | 0.1381                   |        | 25       | 1       | 0.4/10                    |        | 14<br>15 | 1   | 0.4170           |
| l         | 16       | 4        | 0.0028               | 20       | 12       | 7  | 0.1656                   |        | 26       |         |                           |        | 16       | 1   | 0.4878           |
|           | 17       | 1        | 0.1018               |          | 13       | 6  | 0.1589                   |        | 27       |         |                           |        | 17       | 4   | 0.4691           |
|           |          |          |                      |          |          | Ŭ  |                          |        |          |         |                           |        | *'       | 1   |                  |

| <br>胸 高<br>直径階 | 樹高<br>階 | 本数 | 平 均幹材積       | 胸 高直径階 | 樹高<br>階 | 本数 | 平 均幹材積         | 胸 高直径階 | 樹高<br>階 | 本数 | 平 均幹材積                    | 胸 高直径階 | 樹高階     | 本数  | 平 均<br>幹材積               |
|----------------|---------|----|--------------|--------|---------|----|----------------|--------|---------|----|---------------------------|--------|---------|-----|--------------------------|
| cm             | m<br>18 | 本7 | m³<br>0.4929 | cm     | m<br>29 | 本  | m <sup>3</sup> | cm     | m<br>20 | 本3 | $\frac{{ m m}^3}{1.2852}$ | cm     | m<br>20 | 本 2 | m <sup>3</sup><br>1.2154 |
|                | 19      | 6  | 0.6000       |        | 30      | 1  | 1.1411         |        | 21      | 2  | 0.8778                    |        | 21      | _   | 1,2101                   |
|                | 20      | 6  | 0.6070       |        | 00      | •  | 1.1411         |        | 22      | 9  | 1.1057                    |        | 22      | 4   | 1.4304                   |
|                | 21      | 8  | 0.6855       | 36     | 14      | 1  | 0.5386         |        | 23      | 7  | 1.2249                    |        | 23      | 7   | 1.6904                   |
|                | 22      | 8  | 0.6655       |        | 15      | 2  | 0.7346         |        | 24      | 9  | 1.3429                    |        | 24      | 8   | 1.7676                   |
|                | 23      | 8  | 0.6971       |        | 16      | 1  | 0.8164         |        | 25      | 4  | 1.3607                    |        | 25      | 11  | 1.7368                   |
|                | 24      | 6  | 0.7583       |        | 17      | 1  | 0.8005         |        | 26      | 2  | 1.3601                    |        | 26      | 8   | 1.9141                   |
|                | 25      | 5  | 0.8272       |        | 18      | 2  | 0.7389         |        | 27      | 2  | 1.4079                    |        | 27      | 5   | 1.8914                   |
|                | 26      | 2  | 0.8372       |        | 19      | 3  | 0.8134         |        | 28      | 1  | 1.4769                    |        | 28      | 2   | 1.9668                   |
|                |         |    |              | ļ      | 20      | 3  | 0.7679         |        | 29      | 2  | 1.4660                    |        |         |     |                          |
| 32             | 13      | 1  | 0.4226       |        | 21      | 8  | 0.8439         |        |         |    |                           |        | 1       |     |                          |
|                | 14      |    |              |        | 22      | 8  | 0.9235         | 42     | 17      | 2  | 0.9981                    |        |         |     |                          |
|                | 15      | 2  | 0.5443       |        | 23      | 7  | 1.0122         |        | 18      |    |                           |        |         |     |                          |
|                | 16      |    |              |        | 24      | 7  | 1.1246         |        | 19      | 2  | 1.1256                    | 48     | 20      | 1   | 1.8678                   |
|                | 17      | 2  | 0.6157       |        | 25      | 6  | 1.0688         |        | 20      | 1  | 0.9944                    |        | 21      | 3   | 1.7487                   |
|                | 18      | 8  | 0.5740       |        | 26      | 2  | 1.1683         |        | 21      | 5  | 1.2187                    |        | 22      | 3   | 1.5073                   |
|                | 19      | 6  | 0.6100       |        | 27      | 2  | 1.0404         |        | 22      | 4  | 1.1622                    | 1      | 23      | 2   | 1.8048                   |
|                | 20      | 5  | 0.6920       |        |         |    |                |        | 23      | 7  | 1.3302                    |        | 24      | 10  | 1.8148                   |
|                | 21      | 11 | 0.7203       | 38     | 13      | 1  | 0.4548         |        | 24      | 6  | 1.4360                    |        | 25      | 6   | 1.7080                   |
|                | 22      | 9  | 0.7786       |        | 14      |    |                |        | 25      | 3  | 1.4664                    |        | 26      | 10  | 2.0182                   |
|                | 23      | 16 | 0.7607       |        | 15      |    |                | İ      | 26      | 4  | 1.4393                    |        | 27      | 5   | 1.8472                   |
|                | 24      | 3  | 0.8281       |        | 16      | 2  | 0.5415         |        | 27      | 15 | 1.6304                    |        | 28      | 1   | 1.9870                   |
|                | 25      | 1  | 0.8806       | i      | 17      | 3  | 0.7829         |        | 28      | 2  | 1.7054                    |        | 29      |     |                          |
|                | 26      | 2  | 0.8817       |        | 18      | 3  | 0.8532         |        | 29      |    |                           |        | 30      | 1   | 2.4538                   |
|                | 27      | 1  | 1.0346       |        | 19      | 3  | 0.9119         | ,      | 30      | 1  | 1.8404                    |        | 31      |     |                          |
|                | 28      |    |              |        | 20      | 7  | 0.8867         |        | 31      | 1  | 1.8963                    |        | 32      | 1   | 2.5690                   |
|                | 29      | 1  | 1.0408       | ĺ      | 21      | 3  | 1.0102         |        | ĺ       |    |                           |        | ĺ       |     |                          |
|                |         |    |              |        | 22      | 1  | 1.0180         | 44     | 18      | 1  | 1.0658                    | 50     | 19      | 3   | 1.6145                   |
| 34             | 14      | 1  | 0.6412       | -      | 23      | 12 | 1.2454         | i      | 19      | 4  | 1.2956                    |        | 20      | 2   | 1.6686                   |
|                | 15      | 1  | 0.5175       |        | 24      | 9  | 1.0701         |        | 20      | 1  | 0.9583                    |        | 21      | 1   | 2.0316                   |
|                | 16      | 4  | 0.5677       | 1      | 25      | 5  | 1.0745         |        | 21      | 2  | 1.2410                    |        | 22      | 6   | 1.7220                   |
|                | 17      | 2  | 0.6851       |        | 26      | 3  | 1.2489         |        | 22      | 5  | 1.4035                    |        | 23      | 6   | 1.7769                   |
|                | 18      | 2  | 0.6809       |        | 27      | 2  | 1.5681         |        | 23      | 4  | 1.5429                    |        | 24      | 4   | 2.0289                   |
|                | 19      | _  | 0 =====      | il     | 28      | 1  | 1.4749         |        | 24      | 10 | 1.5583                    |        | 25      | 9   | 2.0314                   |
|                | 20      | 5  | 0.7128       |        | 29      |    |                |        | 25      | 7  | 1.4483                    |        | 26      | 5   | 2.0048                   |
|                | 21      | 4  | 0.7895       |        | 30      | 1  | 1.4227         |        | 26      | 5  | 1.7463                    |        | 27      | 6   | 2.2770                   |
|                | 22      | 6  | 0.7975       |        | 31      |    | 1 5000         |        | 27      | 4  | 1.5528                    |        | 28      | 3   | 2.2764                   |
|                | 23      | 14 | 0.8509       |        | 32      | 1  | 1.7002         |        | 28      | 2  | 1.7216                    |        | 29      | 2   | 2.4264                   |
|                | 24      | 8  | 0.9675       |        |         |    | 0 5000         |        | 29      | 1  | 1.7732                    |        | 30      | 1   | 2.3740                   |
|                | 25      | 4  | 0.9364       | 40     | 16      | 1  | 0.7672         |        | 30      | 2  | 2.0500                    |        | 31      | 1   | 2.7886                   |
|                | 26      | 1  | 1.0546       |        | 17      | 1  | 0.8575         |        | 10      |    | 1 0004                    |        | 1.7     | _   | 1 (050                   |
|                | 27      | 1  | 1.1794       |        | 18      | 3  | 1.1261         | 46     | 18      | 1  | 1.0394                    | 52     | 17      | 2   | 1.6879                   |
|                | 28      | 1  | 1.0900       |        | 19      | 4  | 9843           |        | 19      | 1  | 1.1660                    |        | .18     |     |                          |

直径階別,樹高階別,平均材積 (全本数)

(つづき)

| 高<br>径階 | 樹高<br>階 | 本数 | 平 均幹材積                   | 胸 高<br>直径階 | 樹高<br>階 | 本教  | 平 均幹材積                   | 胸 高直径階 | 樹高<br>階 | 本数  | 平 均幹材積       | 胸 高直径階 | 樹高<br>階 | 本数  | 平 均幹材積 |
|---------|---------|----|--------------------------|------------|---------|-----|--------------------------|--------|---------|-----|--------------|--------|---------|-----|--------|
| cm      | m<br>19 | 本  | m <sup>3</sup><br>1.3270 | cm         | m<br>24 | 本 6 | m <sup>3</sup><br>2.1305 | cm     | m<br>24 | 本 1 | m³<br>2.9768 | cm     | m<br>24 | 本 4 | 3.206  |
|         | 20      | 4  | 1.5024                   | 1          | 25      | 3   | 2.3549                   |        | 25      | 3   | 2.7956       | İ.     | 25      | 2   | 3.038  |
|         | 21      | 3  | 1.7842                   |            | 26      | 8   | 2.4025                   |        | 26      | 2   | 3.3288       |        | 26      | 4   | 3.28   |
|         | 22      | 4  | 1.9597                   |            | 27      | 6   | 2.6184                   |        | 27      | 4   | 3.3455       |        | 27      | 6   | 3.94   |
|         | 23      | 1  | 1.8376                   |            | 28      | 7   | 2.9063                   |        | 28      | 4   | 3.5824       |        | 28      | 3   | 4.16   |
|         | 24      | 7  | 2.0715                   |            | 29      | 1   | 2.7213                   |        | 29      | 1   | 3.2993       |        | 29      | Ì   |        |
|         | 25      | 8  | 2.1888                   |            | 30      | 1   | 3.1172                   |        | 30      | 1   | 3.1049       |        | 30      |     |        |
|         | 26      | 7  | 2.2685                   |            | 31      |     |                          |        | 31      | 2   | 3.4693       |        | 31      |     |        |
|         | 27      | 4  | 2.3649                   |            | 32      | 4   | 3.1404                   |        |         |     |              |        | 32      | 1   | 3.61   |
|         | 28      | 1  | 2.3102                   |            |         |     |                          | 64     | 20      | 1   | 2.2691       |        |         |     |        |
|         | 29      | 1  | 2.1364                   | 58         | 19      | 1   | 1.6424                   |        | 21      |     |              | 70     | 22      | 1   | 3.80   |
|         | 30      | 5  | 2.7083                   |            | 20      | 1   | 2.0007                   |        | 22      | 1   | 2.5465       |        | 23      | 5   | 3.53   |
|         | 31      | 1  | 2.8597                   |            | 21      | 2   | 2.2017                   |        | 23      | 1   | 2.5400       |        | 24      |     |        |
|         | 32      |    |                          |            | 22      |     |                          |        | 24      | 4   | 3.1102       |        | 25      | 3   | 3.16   |
|         | 33      |    |                          | l l        | 23      | 3   | 2.6741                   |        | 25      | 6   | 3.0934       |        | 26      | 3   | 3.61   |
|         | 34      | 1  | 3.6012                   | į.         | 24      | 6   | 2.5916                   | j      | 26      | 6   | 3.5792       |        | 27      | 3   | 4.10   |
|         |         |    |                          |            | 25      | 6   | 2.6720                   | 1      | 27      | 5   | 3.3654       |        | 28      | 5   | 4.33   |
| 54      | 15      | 1  | 1.2453                   |            | 26      | 10  | 2.7422                   |        | 28      | 4   | 3.3498       |        | 29      | l   |        |
|         | 16      |    |                          |            | 27      | 7   | 2.8447                   |        | 29      | 1   | 4.2776       |        | 30      | 1   | 4.83   |
|         | 17      |    |                          |            | 28      | 5   | 2.8118                   | į      | 30      | 1   | 4.4634       |        | 31      |     |        |
|         | 18      | 1  | 1.5261                   |            | 29      | 4   | 3.2395                   |        | 31      |     |              |        | 32      | 1   | 4.71   |
|         | 19      |    |                          |            | 30      | 3   | 3.3094                   | j i    | 32      | 1   | 3.5086       |        | 33      | 1   | 4.39   |
|         | 20      | 3  | 1.7818                   |            | 31      |     |                          | 1      | 33      | 1   | 2.8176       |        |         |     |        |
|         | 21      | 2  | 2.1929                   |            | 32      | 1   | 3.3346                   |        |         |     |              | 72     | 20      | 1   | 3.27   |
|         | 22      | 5  | 2.1945                   |            |         |     |                          | 66     | 22      | 1   | 2.3218       |        | 21      |     |        |
|         | 23      | 5  | 2.1718                   | 60         | 20      | 1   | 2.0765                   |        | 23      | 2   | 2.7343       |        | 22      | 1   | 3.32   |
|         | 24      | 5  | 2.4109                   | i i        | 21      | 2   | 2.0940                   | i      | 24      | 2   | 2.8276       |        | 23      |     |        |
|         | 25      | 1  | 2.7902                   |            | 22      | 3   | 2.2061                   |        | 25      | 2   | 3.1342       |        | 24      | 1   | 4.45   |
|         | 26      | 7  | 2.4016                   | 1          | 23      | 3   | 2.5405                   |        | 26      | 7   | 3.5417       |        | 25      | 3   | 3.66   |
|         | 27      | 5  | 2.6288                   |            | 24      | 5   | 2.6323                   |        | 27      | 3   | 3.7079       |        | 26      | 4   | 4.13   |
|         | 28      | 9  | 2.7858                   |            | 25      | 6   | 2.9441                   |        | 28      |     |              |        | 27      | 2   | 3.75   |
|         | 29      | 1  | 3.2979                   |            | 26      | 3   | 3.0461                   |        | 29      | 2   | 4.0427       |        | 28      | 4   | 4.47   |
|         | 30      | 2  | 2.7233                   |            | 27      | 4   | 2.6091                   |        | 30      | 1   | 3.6332       |        | 29      | 1   | 4.78   |
|         | 31      | 1  | 2.5089                   |            | 28      | 3   | 3.0538                   |        | 31      | 2   | 3.8821       |        | 30      | 1   | 6.67   |
|         | 32      | 1  | 3.2505                   |            | 29      | 6   | 3.4070                   |        | 32      |     |              |        | 31      | 1   | 4.59   |
|         |         |    |                          |            | 30      | 1   | 3.6784                   | l      | 33      |     |              |        | 32      | 3   | 5.17   |
| 56      | 17      | 2  | 1.5270                   |            | 31      | 1   | 3.6680                   |        | 34      |     |              |        | 33      | 1   | 5.03   |
|         | 18      |    |                          |            |         |     |                          |        | 35      | 1   | 4.5356       |        |         |     |        |
|         | 19      |    |                          | 62         | 19      | 1   | 1.0978                   |        |         |     |              | 74     | 19      | 1   | 2.78   |
|         | 20      | 1  | 2.1449                   |            | 20      |     | 0 501:                   | 68     | 20      | 1   | 2.9294       |        | 20      |     | 0.15   |
|         | 21      |    | 0.6000                   |            | 21      | 1   | 2.7914                   |        | 21      |     | 0.4014       |        | 21      | 1   | 3.12   |
|         | 22      | 2  | 2.0880                   |            | 22      |     | 0.4400                   |        | 22      | 1   | 2.4014       |        | 22      | 1   | 3.30   |
|         | 23      | 1  | .2.6812                  |            | 23      | 4   | 2.4402                   |        | 23      | 4   | 2.9361       | H      | 23      | 1   | 3.51   |

| 胸 高<br>直径階 | 樹高<br>階 | 本数  | 平 均幹材積       | 胸 高直径階     | 樹高<br>階 | 本数  | 平 均幹材積                   | 胸 高直径階 | 樹高<br>階 | 本数  |                          | 胸 高直径階 | 樹高階     | 本数  | 平 均幹材積                    |
|------------|---------|-----|--------------|------------|---------|-----|--------------------------|--------|---------|-----|--------------------------|--------|---------|-----|---------------------------|
| cm         | m<br>24 | 本 2 | m³<br>4.3329 | cm<br>  80 | m<br>20 | 本 2 | m <sup>3</sup><br>4.3390 | cm     | m<br>27 | 本 1 | m <sup>3</sup><br>6.5578 | cm     | m<br>36 | 本 1 | m <sup>3</sup><br>10.2344 |
|            | 25      |     | 4.3329       | 00         | 21      |     | 4.5590                   |        | 28      | 2   | 7.0960                   |        | 30      | 1   | 10.2344                   |
|            | 26      | 5   | 3.6794       |            | 22      | 1   | 3.5380                   |        | 29      | 1   | 6.0682                   | 98     | 26      | 1   | 5.6987                    |
|            | 27      | 3   | 4.5711       |            | 23      | 1   | 5.0750                   |        | 30      | 1   | 0.0002                   |        | 27      | 1   | 7.6223                    |
|            | 28      | 2   | 4.2300       |            | 24      | •   | 0.0.00                   |        | 31      | 2   | 7.6213                   |        | 35      | 1   | 9.1505                    |
|            | 29      |     | 1,2000       |            | 25      | 2   | 4.6802                   |        | 32      |     |                          |        | 00      |     | 7.1000                    |
|            | 30      | 2   | 5.4404       |            | 26      | 2   | 4.0062                   |        | 33      | 1   | 5.8464                   | 100    | 26      | 2   | 6.9422                    |
|            | 31      | 3   | 5.0551       |            | 27      | 4   | 5.3200                   |        |         | _   |                          |        | 29      | 1   | 6.3067                    |
|            | 39      | 1   | 4.0716       |            | 28      | 1   | 5.5285                   | 88     | 20      | 1   | 5.0941                   |        | 32      | 1   | 10.1156                   |
|            |         |     |              |            | 29      |     |                          |        | 21      | _   |                          |        |         |     |                           |
| 76         | 20      | 1   | 3.5376       |            | 30      | 2   | 5.4302                   |        | 22      |     |                          | 102    | 31      | 1   | 9.1175                    |
|            | 21      | -   |              |            | 31      |     |                          |        | 23      |     |                          |        | 33      | 1   | 9.2902                    |
|            | 22      |     |              |            | 32      |     |                          |        | 24      |     |                          |        |         |     |                           |
|            | 23      | 1   | 4.2683       |            | 33      | 1   | 6.0950                   |        | 25      | 1   | 7.0846                   | 104    | 26      | 1   | 8.1586                    |
|            | 24      |     |              | ĺ          | 34      |     |                          |        | 26      | 2   | 6.4110                   |        | 27      | 1   | 7.6137                    |
|            | 25      | 4   | 4.3331       |            | 35      |     |                          |        | 27      | 1   | 5.5883                   |        | 33      | 1   | 8.8186                    |
|            | 26      | 1   |              | ŀ          | 36      |     |                          |        | 28      |     |                          |        | 34      | 1   | 10.7498                   |
|            | 27      | 2   | 4.5773       |            | 37      | 1   | 7.2556                   |        | 29      | 1   | 6.6966                   |        | 36      | 1   | 9.7444                    |
|            | 28      | 2   | 5.0162       |            |         |     |                          |        | 30      | 1   | 6.9488                   |        |         |     |                           |
|            | 29      | 1   | 4.6868       | 82         | 22      | 1   | 4.8405                   |        | 31      |     |                          | 106    | 27      | 1   | 8.3095                    |
|            | 30      | 1   | 5.3408       |            | 26      | 1   | 5.3256                   |        | 32      |     |                          |        | 29      | 2   | 7.3802                    |
|            | 31      | 4   | 4.7255       |            | 27      | 3   | 4.3823                   | !      | 33      | 1   | 6.8069                   |        | 30      | 1   | 9.4169                    |
|            | 32      |     |              |            | 28      | 1   | 4.3354                   |        |         |     |                          |        | 35      | 1   | 11.0612                   |
|            | 33      |     |              |            | 29      | 2   | 5.8159                   | 90     | 25      | 2   | 5.8972                   |        |         |     |                           |
|            | 34      | 1   | 4.4771       |            | 30      |     |                          |        | 28      | 2   | 5.9392                   | 110    | 28      | 1   | 7.6236                    |
|            | 35      | 1   | 5.3022       |            | 31      | 1   | 5.1001                   |        | 32      | 1   | 7.2994                   |        | 29      | 1   | 9.1966                    |
|            | ĺ       |     |              |            | 32      | 3   | 5.5242                   |        | 33      | 1   | 6.5644                   |        | 37      | 1   | 11.7870                   |
| .78        | 22      | 1   | 3.8422       |            |         |     |                          |        | 35      | 1   | 7.6571                   |        |         |     |                           |
|            | 23      |     |              | 84         | 24      | 2   | 4.6731                   |        |         |     |                          | 136    | 36      | 1   | 14.2881                   |
|            | 24      | 2   | 4.3001       |            | 25      |     |                          | 92     | 24      | 1   | 5.8670                   |        |         |     |                           |
|            | 25      | 1   | 4.5578       |            | 26      | 2   | 4.4087                   |        | 25      | 1   | 6.0583                   |        |         |     |                           |
|            | 26      | 1   | 4.8661       |            | 27      | 2   | 6.3710                   |        | 28      | 1   | 6.1806                   |        |         |     |                           |
|            | 27      | 2   | 3.7167       |            | 28      | 1   | 5.9992                   |        | 34      | 1   | 8.3449                   |        |         |     |                           |
|            | 28      | 1   | 5.3987       |            | 29      |     |                          |        |         |     |                          |        |         |     |                           |
|            | 29      | 2   | 5.0068       |            | 30      | 3   | 5.8107                   | 94     | 25      | 1   | 5.3048                   |        |         |     |                           |
|            | 30      | 1   | 5.1741       |            | 31      |     |                          | i      | 27      | 2   | 7.0790                   |        |         |     |                           |
|            | 31      | 1   | 5.4068       |            | 32      | 1   | 4.9014                   |        | 31      | 1   | 6.3084                   |        |         |     |                           |
|            | 32      | 2   | 5.7613       |            | 33      | 1   | 5.5179                   |        | 33      | 1   | 8.6920                   |        |         |     |                           |
|            | 33      |     |              |            |         |     |                          |        |         |     |                          |        |         |     |                           |
|            | 34      | 1   | 6.8748       | 86         | 24      | 1   | 4.7374                   | 96     | 26      | 1   | 6.6741                   |        |         |     |                           |
|            | 35      | 1   | 6.4788       |            | 25      | 3   | 4.9236                   |        | 27      | 1   | 6.5973                   |        |         |     |                           |
|            | 37      | 1   | 7.3994       |            | 26      | 2   | 5.6277                   |        | 30      | 1   | 9.4445                   |        |         |     |                           |
|            |         |     |              |            |         |     |                          |        | 31      | 1   | 7.3306                   | l      |         |     |                           |

附表 3 表

### 胸高直径階別, 樹高階別平均材積(棄却後)

| 胸 高直径階  | 樹高<br>階 | 本数  | 平 均幹材積                   | 胸 高直径階   | 樹高<br>階 | 本数  | 平 均幹材積                   | 胸 高直径階 | 樹高<br>階 | 本数      | 平 均幹材積                   | 胸 高直径階 | 樹高<br>階     | 本数 | 平 均幹材積                   |
|---------|---------|-----|--------------------------|----------|---------|-----|--------------------------|--------|---------|---------|--------------------------|--------|-------------|----|--------------------------|
| cm<br>4 | m<br>4  | 本 5 | m <sup>3</sup><br>0.0025 | cm<br>14 | m<br>8  | 本 2 | m <sup>3</sup><br>0.0505 | cm     | m<br>14 | 本<br>15 | m <sup>3</sup><br>0.2051 | cm     | m  <br>  28 | 本  | m <sup>3</sup><br>0.6972 |
| -       | 5       | 14  | 0.0035                   |          | 9       | 2   | 0.0677                   |        | 15      | 10      | 0.2018                   |        |             | .  |                          |
|         | 6       | 10  | 0.0044                   |          | 10      | 3   | 0.0719                   |        | 16      | 16      | 0.2196                   | 26     | 12          | 2  | 0.2749                   |
|         | 7       | 7   | 0.0058                   |          | 11      | 11  | 0.0758                   |        | 17      | 10      | 0.2414                   |        | 13          | 1  | 0.3216                   |
|         | 8       | 5   | 0.0072                   |          | 12      | 15  | 0.0873                   |        | 18      | 11      | 0.2587                   | ľ      | 14          | 6  | 0.3234                   |
|         |         |     |                          |          | 13      | 17  | 0.0941                   |        | 19      | 19      | 0.2694                   |        | 15          | 1  | 0.3568                   |
| 6       | 6       | 10  | 0.0092                   | 1        | 14      | 26  | 0.0993                   |        | 20      | 5       | 0.2912                   |        | 16          |    |                          |
|         | 7       | 22  | 0.0107                   |          | 15      | 14  | 0.1112                   |        | 21      | 1       | 0.3371                   |        | 17          | 5  | 0.3928                   |
|         | 8       | 26  | 0.0128                   |          | 16      | 12  | 0.1142                   |        | 22      | ĺ       |                          |        | 18          | 6  | 0.4082                   |
|         | 9       | 13  | 0.0131                   |          | 17      | 5   | 0.1386                   |        | 23      | 1       | 0.3411                   |        | 19          | 4  | 0.4075                   |
|         | 10      | 9   | 0.0167                   |          | 18      | 2   | 0.1475                   |        | 24      | 2       | 0.3788                   |        | 20          | 8  | 0.4543                   |
|         | 11      | 3   | 0.0188                   |          |         |     |                          |        |         |         |                          |        | 21          | 13 | 0.4870                   |
|         |         |     |                          | 16       | 9       | 1   | 0.0853                   | 22     | 11      | 1       | 0.1345                   |        | 22          | 5  | 0.5093                   |
| 8       | 6       | 2   | 0.0149                   |          | 10      | 2   | 0.0763                   |        | 12      | 2       | 0.2236                   |        | 23          | 3  | 0.5601                   |
|         | 7       | 12  | 0.0167                   |          | 11      | 4   | 0.1094                   |        | 13      |         |                          |        | 24          | 6  | 0.5943                   |
|         | 8       | 15  | 0.0189                   |          | 12      | 9   | 0.1124                   |        | 14      | 7       | 0.2350                   |        | 25          | 1  | 0.4646                   |
|         | 9       | 24  | 0.0231                   |          | 13      | 17  | 0.1207                   |        | 15      | 9       | 0.2406                   |        |             |    |                          |
|         | 10      | 22  | 0.0241                   |          | 14      | 20  | 0.1297                   |        | 16      | 10      | 0.2652                   | 28     | 10          | 1  | 0.1912                   |
|         | 11      | 9   | 0.0283                   |          | 15      | 14  | 0.1340                   | ļ      | 17      | 7       | 0.2928                   |        | 11          |    | •                        |
|         | 12      | 3   | 0.0305                   |          | 16      | 13  | 0.1490                   | l      | 18      | 11      | 0.3045                   |        | 12          | 1  | 0.2746                   |
|         | 13      | 4   | 0.0319                   |          | 17      | 13  | 0.1560                   | 1      | 19      | 8       | 0.3204                   |        | 13          |    |                          |
|         | 14      | 1   | 0.0326                   |          | 18      | 5   | 0.1687                   |        | 20      | 11      | 0.3339                   |        | 14          | 5  | 0.3980                   |
|         |         |     |                          |          | 19      | 2   | 0.1585                   | ll.    | 21      | 5       | 0.3860                   |        | 15          | 2  | 0.4062                   |
| 10      | 7       | 4   | 0.0324                   |          | 20      |     |                          | ŀ      | 22      | 8       | 0.3953                   |        | 16          | 2  | 0.4104                   |
|         | 8       | 7   | 0.0294                   | į.       | 21      | 1   | 0.2081                   |        | 23      | 2       | 0.4001                   |        | 17          | 8  | 0.4265                   |
|         | 9       | 11  | 0.0337                   |          |         |     |                          |        | 24      | 2       | 0.4173                   | i<br>I | 18          | 12 | 0.4708                   |
|         | 10      | 19  | 0.0363                   | 18       | 11      | 4   | 0.1260                   |        | l       |         |                          | i<br>i | 19          | 6  | 0.4930                   |
|         | 11      | 21  | 0.0410                   |          | 12      | 4   | 0.1363                   | 24     | 12      | 2       | 0.2014                   |        | 20          | 5  | 0.5164                   |
|         | 12      | 20  | 0.0470                   |          | 13      | 7   | 0.1679                   |        | 13      | 2       | 0.2361                   |        | 21          | 5  | 0.5656                   |
|         | 13      | 9   | 0.0469                   |          | 14      | 14  | 0.1602                   |        | 14      | 5       | 0.2883                   |        | 22          | 9  | 0.5909                   |
|         | 14      | 7   | 0.0558                   |          | 15      | 17  | 0.1648                   |        | 15      | 5       | 0.3036                   |        | 23          | 6  | 0.6171                   |
|         | 15      | 1   | 0.0698                   |          | 16      | 11  | 0.1882                   | ĺ      | 16      | 7       | 0.2972                   |        | 24          | 7  | 0.6568                   |
|         |         |     | 0.0070                   |          | 17      | 19  | 0.1956                   |        | 17      | 10      | 0.3280                   |        | 25          | 1  | 0.7832                   |
| 12      | 9       | 2   | 0.0425                   | i        | 18      | 14  | 0.2056                   | İ      | 18      | 8       | 0.3321                   |        | 26          | 1  | 0.6940                   |
|         | 10      | 14  | 0.0436                   |          | 19      | 6   | 0.2199                   |        | 19      | 10      | 0.3640                   |        | 27          | 1  | 0.7574                   |
|         | 11      | 20  | 0.0612                   |          | 20      | 2   | 0.2740                   |        | 20.     | 14      | 0.3941                   |        |             |    |                          |
|         | 12      | 14  | 0.0648                   |          | 21      |     |                          | -      | 21      | 7       | 0.4183                   |        |             |    |                          |
|         | 13      | 20  | 0.0732                   |          | 22      | 1   | 0.2376                   |        | 22      | 5       | 0.4819                   | 30     | 12          | 1  | 0.3222                   |
|         | 14      | 15  | 0.0733                   |          | 23      | 1   | 0.2401                   |        | 23      | 2       | 0.4426                   |        | 13          | 1  | 0.4324                   |
|         | 15      | 9   | 0.0828                   |          |         |     |                          |        | 24      | 1       | 0.4716                   |        | 14          | 1  | 0.4170                   |
|         | 16      | 4   | 0.0904                   | 20       | 11      | 1   | 0.1381                   |        | 25      |         |                          |        | 15          |    |                          |
|         | 17      | 1   | 0.1018                   |          | 12      | 6   | 0.1783                   |        | 26      |         |                          |        | 16          | 1  | 0.4878                   |
|         |         |     |                          |          | 13      | 5   | 0.1658                   |        | 27      |         |                          |        | 17          | 4  | 0.4691                   |
|         |         |     |                          | 1        |         |     |                          |        |         |         |                          |        |             | _  |                          |

| 胸高  | 樹高        | 本数    | 平均           | 胸 高直径階 | 樹高      | 本数 | 平均     | 胸 高直径階 | 樹高 | 本数 | 平均           | 胸 高直径階 | 樹高      | 本数 | 平均           |
|-----|-----------|-------|--------------|--------|---------|----|--------|--------|----|----|--------------|--------|---------|----|--------------|
| 直径階 | 階         | /A 4X | 幹材積          | 直径階    | 階       | 本  |        | 直径階    | 階  |    |              | !!     | 階       |    | 幹材積          |
| cm  | m<br>  18 | 本 6   | m³<br>0.5174 | cm     | m<br>29 | 本  | m³     | cm     | 20 | 本  | m³<br>1.0356 | cm     | m<br>20 | 本2 | m³<br>1.2154 |
|     | 19        | 6     | 0.6000       |        | 30      | 1  | 1.1411 |        | 21 | 2  | 0.8778       |        | 21      |    |              |
|     | 20        | 6     | 0.6070       |        |         | _  |        |        | 22 | 9  | 1.1057       |        | 22      | 4  | 1.4304       |
|     | 21        | 7     | 0.6650       | 36     | 14      | 1  | 0.5386 |        | 23 | 6  | 1.2714       |        | 23      | 7  | 1.6904       |
|     | 22        | 8     | 0.6655       |        | 15      | 2  | 0.7346 |        | 24 | 8  | 1.3428       |        | 24      | 8  | 1.7676       |
|     | 23        | 8     | 0.6971       |        | 16      | 1  | 0.8164 |        | 25 | 4  | 1.3607       |        | 25      | 11 | 1.7368       |
|     | 24        | 6     | 0.7583       |        | 17      | 1  | 0.8005 |        | 26 | 2  | 1.3601       |        | 26      | 8  | 1.9141       |
|     | 25        | 5     | 0.8272       |        | 18      | 2  | 0.7389 |        | 27 | 2  | 1.4079       |        | 27      | 5  | 1.8914       |
|     | 26        | 2     | 0.8372       |        | 19      | 3  | 0.8134 |        | 28 | 1  | 1.4769       |        | 28      | 2  | 1.9668       |
|     |           |       |              |        | 20      | 3  | 0.7679 |        | 29 | 2  | 1.4660       |        |         |    |              |
| 32  | 13        | 1     | 0.4226       |        | 21      | 7  | 0.9644 | i      |    |    |              |        |         |    |              |
|     | 14        |       |              |        | 22      | 8  | 0.8435 | 42     | 17 | 2  | 0.9981       |        |         |    |              |
|     | 15        | 1     | 0.4444       |        | 23      | 7  | 1.0122 |        | 18 |    |              |        |         |    |              |
|     | 16        |       |              |        | 24      | 7  | 1.1246 |        | 19 | 2  | 1.1256       | 48     | 20      | 1  | 1.8678       |
|     | 17        | 2     | 0.6157       | ŀ      | 25      | 6  | 1.0688 |        | 20 | 1  | 0.9944       |        | 21      | 3  | 1.7487       |
|     | 18        | 7     | 0.5916       |        | 26      | 2  | 1.1683 |        | 21 | 5  | 1.2187       |        | 22      | 2  | 1.6746       |
|     | 19        | 6     | 0.6100       | 1      | 27      | 1  | 1.2527 |        | 22 | 3  | 1.2409       |        | 23      | 2  | 1.8048       |
|     | 20        | 5     | 0.7203       |        |         |    |        |        | 23 | 7  | 1.3302       |        | 24      | 10 | 1.8148       |
|     | 21        | 10    | 0.7460       | 38     | 13      | 1  | 0.4548 |        | 24 | 6  | 1.4360       |        | 25      | 4  | 1.9217       |
|     | 22        | 9     | 0.7786       |        | 14      |    |        |        | 25 | 3  | 1.4664       |        | 26      | 9  | 2.1948       |
|     | 23        | 15    | 0.7915       |        | 15      |    |        |        | 26 | 4  | 1.4393       |        | 27      | 5  | 1.8472       |
|     | 24        | 3     | 0.8281       |        | 16      | 1  | 0.5630 |        | 27 | 15 | 1.6304       |        | 28      | 1  | 1.9870       |
|     | 25        | 1     | 0.8806       |        | 17      | 2  | 0.8771 |        | 28 | 2  | 1.7054       |        | 29      |    |              |
|     | 26        | 2     | 0.8817       |        | 18      | 3  | 0.8532 | İ      | 29 |    |              |        | 30      | 1  | 2.4538       |
|     | 27        | 1     | 1.0346       |        | 19      | 3  | 0.9119 |        | 30 | 1  | 1.8404       |        | 31      |    |              |
|     | 28        |       |              |        | 20      | 6  | 0.9220 |        | 31 | 1  | 1.8963       |        | 32      | 1  | 2.5690       |
|     | 29        | 1     | 1.0408       | ĺ      | 21      | 3  | 1.0102 |        |    |    |              |        | ĺ       |    |              |
|     |           |       |              | l      | 22      | 1  | 1.0180 | 44     | 18 | 1  | 1.0658       | 50     | 19      | 3  | 1.6145       |
| 34  | 14        | 1     | 0.6412       | li     | 23      | 11 | 1.1691 |        | 19 | 4  | 1.2956       |        | 20      | 2  | 1.6686       |
|     | 15        | 1     | 0.5175       |        | 24      | 9  | 1.0701 |        | 20 |    |              |        | 21      | 1  | 2.0316       |
|     | 16        | 3     | 0.6197       |        | 25      | 5  | 1.0745 |        | 21 | 2  | 1.2410       |        | 22      | 6  | 1.7220       |
|     | 17        | 1     | 0.5412       | 1      | 26      | 3  | 1.2489 |        | 22 | 5  | 1.4035       |        | 23      | 6  | 1.7769       |
|     | 18        | 1     | 0.8442       |        | 27      | 1  | 1.3081 |        | 23 | 4  | 1.5429       |        | 24      | 4  | 2.0289       |
|     | 19        |       |              |        | 28      | 1  | 1.4749 |        | 24 | 10 | 1.5583       |        | 25      | 8  | 2.1096       |
|     | 20        | 4     | 0.7565       | 1      | 29      |    |        |        | 25 | 7  | 1.4483       |        | 26      | 5  | 2.0048       |
|     | 21        | 4     | 0.7895       |        | 30      | 1  | 1.4227 |        | 26 | 5  | 1.7463       |        | 27      | 5  | 2.1848       |
|     | 22        | 6     | 0.7975       |        | 31      |    |        |        | 27 | 4  | 1.5528       |        | 28      | 3  | 2.2764       |
|     | 23        | 13    | 0.8876       |        | 32      | 1  | 1.7002 |        | 28 | 2  | 1.7216       |        | 29      | 2  | 2.4264       |
|     | 24        | 8     | 0.9675       |        |         |    |        |        | 29 | 1  | 1.7732       |        | 30      | 1  | 2.3740       |
|     | 25        | 3     | 1.0390       | 40     | 16      | 1  | 0.7672 |        | 30 | 2  | 2.0500       |        | 31      | 1  | 2.7886       |
|     | 26        | 1     | 1.0546       |        | 17      | 1  | 0.8575 |        |    |    |              |        |         |    |              |
|     | 27        | 1     | 1.1794       |        | 18      | 3  | 1.1261 | 46     | 18 | 1  | 1.0394       | 52     | 17      | 2  | 1.6879       |
|     | 28        | 1     | 1.0900       |        | 19      | 4  | 0.9843 |        | 19 | 1  | 1.1660       |        | 18      |    |              |

胸高直径階別,樹高階別平均材積 (乗却後) (つづき)

| 胸 高直径階 | 樹高<br>階 | 本数 | 平 均幹材積                   | 胸 高直径階  | 樹高階     | 本数  | 平 均幹材積                   | 胸 高直径階 | 樹高<br>階 | 本数       | 平 均幹材積       | 胸 高直径階 | 樹高階      | 本数  | 平 均幹材積                   |
|--------|---------|----|--------------------------|---------|---------|-----|--------------------------|--------|---------|----------|--------------|--------|----------|-----|--------------------------|
| cm     | m<br>19 | 本1 | m <sup>3</sup><br>1.3270 | cm      | m<br>24 | 本 6 | m <sup>3</sup><br>2.1305 | cm     | m<br>24 | 本 1      | m³<br>2.9768 | cm     | m<br>24  | 本 4 | m <sup>3</sup><br>3.2068 |
|        | 20      | 3  | 1.5569                   |         | 25      | 3   | 2.3549                   |        | 25      | 3        | 2.7956       |        | 25       | 1   | 3.6368                   |
|        | 21      | 3  | 1.7842                   |         | 26      | 6   | 2.5517                   |        | 26      | 2        | 3.3288       |        | 26       | 3   | 3.5106                   |
|        | 22      | 4  | 1.9597                   | 1       | 27      | 6   | 2.6184                   |        | 27      | 4        | 3.3455       |        | 27       | 6   | 3.9424                   |
|        | 23      | 1  | 1.8376                   | 1       | 28      | 7   | 2.9063                   |        | 28      | 4        | 3.5824       |        | 28       | 3   | 4.1677                   |
|        | 24      | 7  | 2.0715                   | 1       | 29      | 1   | 2.7213                   |        | 29      | 1        | 3.2993       |        | 29       |     |                          |
|        | 25      | 8  | 2.1888                   |         | 30      | 1   | 3.1172                   |        | 30      | 1        | 3.1049       |        | 30       |     |                          |
|        | 26      | 6  | 2.4438                   |         | 31      |     |                          |        | 31      | 2        | 3.4693       |        | 31       |     |                          |
|        | 27      | 4  | 2.3649                   |         | 32      | 3   | 3.3744                   | i      |         |          |              |        | 32       | 1   | 3.6181                   |
|        | 28      | 1  | 2.3102                   | [:<br>i |         |     |                          | 64     | 20      | 1        | 2.2691       |        |          |     |                          |
|        | 29      | 1  | 2.1364                   | 58      | 19      | 1   | 1.6424                   |        | 21      |          |              | 70     | 22       | 1   | 3.8074                   |
|        | 30      | 5  | 2.7083                   |         | 20      | 1   | 2.0007                   |        | 22      | 1        | 2.5465       |        | 23       | 5   | 3.5373                   |
|        | 31      | 1  | 2.8597                   |         | 21      | 2   | 2.2017                   |        | 23      | 1        | 2.5400       |        | 24       |     |                          |
|        | 32      |    |                          |         | 22      |     |                          |        | 24      | 4        | 3.1102       |        | 25       | 2   | 3.3954                   |
|        | 33      |    |                          |         | 23      | 3   | 2.6741                   |        | 25      | 6        | 3.0934       |        | 26       | 3   | 3.6168                   |
|        | 34      | 1  | 3.6012                   |         | 24      | 6   | 2.5916                   |        | 26      | 5        | 3.4223       |        | 27       | 2   | 3.5341                   |
| ļ      |         |    |                          |         | 25      | 6   | 2.6720                   |        | 27      | 5        | 3.3654       |        | 28       | 5   | 4.3318                   |
| 54     | 15      | 1  | 1.2453                   | i .     | 26      | 7   | 2.8552                   |        | 28      | 4        | 3.3498       |        | 29       |     |                          |
|        | 16      |    |                          |         | 27      | 7   | 2.7447                   |        | 29      | 1        | 4.2776       |        | 30       | 1   | 4.8390                   |
|        | 17      |    |                          | į       | 28      | 5   | 2.8118                   |        | 30      | 1        | 4.4634       |        | 31       |     |                          |
|        | 18      | 1  | 1.5261                   |         | 29      | 4   | 3.2395                   |        | 31      |          |              |        | 32       | 1   | 4.7154                   |
|        | 19      |    |                          | 1       | 30      | 3   | 3.3094                   |        | 32      | 1        | 3.5086       |        |          |     |                          |
|        | 20      | 3  | 1.7818                   | -       | 31      |     |                          | İ      |         |          |              |        |          |     |                          |
|        | 21      | 2  | 2.1929                   |         | 32      | 1   | 3.3346                   |        |         |          |              | 72     | 20       | 1   | 3.2794                   |
|        | 22      | 4  | 2.0654                   | ]       |         |     |                          | 66     | 22      | 1        | 2.3218       |        | 21       |     |                          |
|        | 23      | 5  | 2.1718                   | 60      | 20      | 1   | 2.0765                   |        | 23      | 2        | 2.7343       |        | 22       | 1   | 3.3274                   |
|        | 24      | 5  | 2.4109                   | il .    | 21      | 2   | 2.0940                   | Ì      | 24      | 1        | 3.1854       |        | 23       |     |                          |
|        | 25      | 1  | 2.7902                   |         | 22      | 3   | 2.2061                   |        | 25      | 2        | 3.1342       |        | 24       | 1   | 4.4594                   |
|        | 26      | 7  | 2.4016                   |         | 23      | 2   | 2.7629                   |        | 26      | 7        | 3.5417       |        | 25       | 3   | 3.6648                   |
|        | 27      | 5  | 2.6288                   |         | 24      | 5   | 2.6323                   |        | 27      | 3        | 3.7079       |        | 26       | 4   | 4.1353                   |
|        | 28      | 9  | 2.7858                   |         | 25      | 6   | 2.9441                   |        | 28      |          |              |        | 27       | 2   | 3.7517                   |
|        | 29      | 1  | 3.2979                   |         | 26      | 3   | 3.0461                   |        | 29      | 2        | 4.0427       |        | 28       | 4   | 4.4785                   |
|        | 30      | 2  | 2.7233                   |         | 27      | 4   | 2.6091                   |        | 30      | 1        | 3.6332       |        | 29       | 1   | 4.7884                   |
|        | 31      | 1  | 2.5089                   |         | 28      | 3   | 3.0538                   |        | 31      | 2        | 3.8821       | l      | 30       |     |                          |
|        | 32      | 1  | 3.2505                   |         | 29      | 6   |                          |        | 32      |          |              |        | 31       | 1   | 4.5948                   |
|        |         | ,  |                          |         | 30      | 1   | 3.6784                   |        | 33      |          |              |        | 32       | 3   | 5.1779                   |
| 56     | 17      | 1  | 1.8916                   |         | 31      | 1   | 3.6680                   | !      | 34      |          |              |        | 33       | 1   | 5.0376                   |
|        | 18      |    |                          |         |         |     |                          |        | 35      | 1        | 4.5356       |        |          |     |                          |
|        | 19      |    |                          |         |         |     |                          |        |         |          |              | 74     | 19       | 1   | 2.7843                   |
|        | 20      | 1  | 2.1449                   | !       |         |     |                          | 68     | 20      | 1        | 2.9294       |        | 20       |     |                          |
|        | 21      |    |                          | 62      | 21      | 1   | 2.7914                   |        | 21      |          |              |        | 21       | 1   | 3.1273                   |
|        | 22      | 2  | 2.0880                   |         | 22      |     |                          |        | 22      | 1        | 2.4014       |        | 22       | 1   | 3.3046                   |
|        | 23      | 1  | 2.6812                   |         | 23      | 4   | 2.4402                   |        | 23      | 4        | 2.9361       |        | 23       | 1   | 3.5180                   |
|        |         |    |                          |         |         |     |                          |        |         | <u> </u> |              |        | <u> </u> |     |                          |

|        |          |                                        | - tree           |         | 1       | 1 |                          | 11         |          | 1 | ,                        | 11     |         | <del></del> |                                         |
|--------|----------|----------------------------------------|------------------|---------|---------|---|--------------------------|------------|----------|---|--------------------------|--------|---------|-------------|-----------------------------------------|
| 胸 高直径階 | 樹高<br>階  | 1 1                                    |                  | 胸 高直径階  | 樹高<br>階 |   | 平 均幹材積                   | 胸 高<br>直径階 | 樹高<br>階  | 1 | 平 均幹材積                   | 胸 高直径階 | 樹高<br>階 | A-333       | 平 均幹材積                                  |
| cm     | m<br>24  | 本2                                     | m³<br>4.3329     | 80      | m<br>20 | 本 | m <sup>3</sup><br>3.1507 | cm         | m<br>27  | 本 | m <sup>3</sup><br>6.5578 | cm     | m<br>36 | 本           | m³<br>10.2344                           |
|        | 25       |                                        |                  |         | 21      |   | 0.100.                   | l l        | 28       | 1 | 6.5558                   | 98     | 26      | 1           | 5.6987                                  |
| 1      | 26       | 4                                      | 4.1441           |         | 22      | 1 | 3.5380                   |            | 29       | 1 | 6.0682                   |        | 27      | 1           | 7.6223                                  |
|        | 27       | 3                                      | 4.5711           |         | 23      | 1 | 5.0750                   |            | 30       |   |                          |        | 35      | 1           | 9.1505                                  |
|        | 28       | 2                                      | 4.2300           |         | 24      |   |                          |            | 31       | 2 | 7.6213                   |        |         |             | ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, |
|        | 29       |                                        |                  |         | 25      | 2 | 4.6802                   |            | 32       |   |                          | 100    | 26      | 2           | 6.9422                                  |
|        | 30       | 2                                      | 5.4404           | ļi<br>I | 26      |   |                          |            | 33       | 1 | 5.8464                   |        | 32      | 1           | 10.1156                                 |
|        | 31       | 3                                      | 5.0551           |         | 27      | 4 | 5.3200                   |            |          |   |                          |        |         |             |                                         |
|        |          |                                        |                  |         | 28      | 1 | 5.5285                   | 88         | 20       | 1 | 5.0941                   | 102    | 31      | 1           | 9.1175                                  |
|        |          |                                        |                  |         | 29      |   |                          |            | 21       |   |                          |        | 33      | 1           | 9.2902                                  |
| 76     | 20       | 1                                      | 3.5376           | ļ       | 30      | 2 | 5.4302                   | l          | 22       |   |                          |        |         |             |                                         |
|        | 21       |                                        |                  |         | 31      |   |                          | l<br>i     | 23       |   |                          |        |         |             |                                         |
|        | 22       |                                        |                  |         | 32      |   |                          |            | 24       |   |                          | 104    | 26      | 1           | 8.1586                                  |
|        | 23       | 1                                      | 4.2683           |         | 33      | 1 | 6.0950                   |            | 25       | 1 | 7.0846                   |        | 27      | 1           | 7.6137                                  |
|        | 24       |                                        |                  |         | 34      |   |                          |            | 26       | 2 | 6.4110                   |        | 33      | 1           | 8.8086                                  |
|        | 25       | 4                                      | 4.3331           |         | 35      |   |                          |            | 27       | 1 | 5.5883                   |        | ·34     | 1           | 10.7498                                 |
|        | 26       |                                        |                  |         | 36      |   |                          | į.         | 28       |   |                          |        | 36      | 1           | 9.7444                                  |
|        | 27       | 2                                      | 4.5773           |         | 37      | 1 | 7.2556                   | İ          | 29       | 1 | 6.6966                   |        |         |             |                                         |
|        | 28       | 2                                      | 5.0162           |         |         |   |                          |            | 30       | 1 | 6.9488                   | 106    | 27      | 1           | 8.3095                                  |
|        | 29       | 1                                      | 4.6868           | 82      | 22      | 1 | 4.8405                   |            | 31       |   |                          |        | 29      | 1           | 10.1252                                 |
|        | 30       | 1                                      | 5.3408           |         | 26      | 1 | 5.3256                   |            | 32       |   |                          |        | 30      | 1           | 9.4169                                  |
|        | 31       | 4                                      | 4.7255           |         | 27      | 3 | 4.3823                   |            | 33       | 1 | 6.8069                   |        | 35      | 1           | 11.0612                                 |
|        | 32       |                                        |                  |         | 28      | 1 | 4.3354                   |            |          |   |                          |        |         |             |                                         |
|        | 33       |                                        |                  |         | 29      | 2 | 5.8159                   | 90         | 25       | 2 | 5.8972                   |        |         |             |                                         |
|        | 34       | 1                                      | 4.4771           |         | 30      |   |                          |            | 28       | 2 | 5.9392                   | 110    | 28      | 1           | 7.6236                                  |
|        | 35       | 1                                      | 5.3022           | i       | 31      | 1 | 5.1001                   |            | 32       | 1 | 7.2994                   |        | 29      | 1           | 9.1966                                  |
|        | 00       |                                        |                  |         |         |   |                          |            | 33       | 1 | 6.5644                   |        | 37      | 1           | 11.7870                                 |
| 78     | 22       | 1                                      | 3.8422           |         |         |   |                          |            | 35       | 1 | 7.6571                   |        |         |             |                                         |
|        | 23       |                                        | 4 0004           | 84      | 24      | 2 | 4.6731                   |            |          |   |                          | 136    | 36      | 1           | 14.2881                                 |
|        | 24       | 2                                      | 4.3001           |         | 25      |   | 4 5546                   | 92         | 24       | 1 | 5.8670                   |        |         |             |                                         |
|        | 25<br>26 | 1                                      | 4.5578           | l       | 26      | 1 | 4.7746                   | Į.         | 25       | 1 | 6.0583                   |        |         |             |                                         |
|        | 20<br>27 | $\begin{vmatrix} 1 \\ 1 \end{vmatrix}$ | 4.8661           |         | 27 28   | 2 | 6.3710                   |            | 28       | 1 | 6.1806                   |        |         |             |                                         |
|        | 28       | 1                                      | 4.0760<br>5.3987 |         | 29      | 1 | 5.9992                   |            | 34       | 1 | 8.3449                   |        |         | İ           |                                         |
|        | 29       | _                                      | 5.0068           |         |         | 9 | E 0107                   | 04         | 05       | - | E 0040                   |        |         |             |                                         |
|        | 30       | 2<br>1                                 | 5.1741           |         | 30      | 3 | 5.8107                   | 94         | 25       | 1 | 5.3048                   |        |         |             |                                         |
|        | 31       | 1                                      | 5.4068           |         | 32      |   |                          |            | 27<br>31 | 2 | 7.0790<br>6.3084         |        |         |             |                                         |
|        | 32       | 2                                      | 5.7613           |         | 33      | 1 | 5.5179                   |            | 33       | 1 | 8.6920                   |        |         |             |                                         |
|        | 33       | -                                      | 3010             |         |         | _ | 3.0119                   |            | 33       | _ | 0.0920                   |        |         |             |                                         |
|        | 34       | 1                                      | 6.8748           | 86      | 24      | 1 | 4.7374                   | 96         | 26       | 1 | 6.6741                   |        |         |             |                                         |
|        | 35       | 1                                      | 6.4788           |         | 25      | 3 | 4.9236                   |            | 27       | 1 | 6.5973                   |        |         |             |                                         |
|        | 36       | -                                      |                  |         | 26      |   | 21,200                   |            | 30       | 1 | 9.4445                   |        |         |             |                                         |
| 1      | 37       | 1                                      | 7.3994           | 1       |         |   |                          |            | 31       | 1 | 7.3306                   |        |         |             |                                         |
|        |          |                                        |                  | li      |         |   |                          |            |          | _ |                          | j      |         |             |                                         |

### 材積表調製業務資料 第1号

| 56       |       |       | 材積表調整 | 以業務資料 | 第1号   |       |       |       |
|----------|-------|-------|-------|-------|-------|-------|-------|-------|
| 付 表 4    | 表     |       |       |       | 広     | 葉     | 樹幹    | 材     |
| 胸高直径 常 高 |       | 20    | 30    | 40    | 50    | 60    | 70    | 80    |
| m<br>2   |       |       |       |       |       |       |       |       |
| 3        | 0.012 | •     |       |       |       |       |       |       |
| 4        | 0.016 |       |       |       |       |       |       |       |
| 5        | 0.020 | 0.066 |       |       |       |       |       |       |
| 6        | 0.024 | 0.080 | 0.170 |       |       |       |       |       |
| 7        | 0.024 |       |       |       |       |       |       |       |
| 8        | 0.027 | 0.094 | 0.201 | 0.007 |       |       |       |       |
| 9        | 0.031 | 0.109 | 0.232 | 0.397 | 0.600 |       |       |       |
| 10       | 0.038 | 0.123 | 0.263 | 0.450 | 0.683 |       |       |       |
| 10       | 0.036 | 0.138 | 0.294 | 0.504 | 0.765 |       |       |       |
| 11       | 0.042 | 0.152 | 0.326 | 0.558 | 0.847 | 1.067 |       |       |
| 12       | 0.045 | 0.167 | 0.357 | 0.612 | 0.929 | 1.182 | 1.717 |       |
| 13       | 0.048 | 0.182 | 0.389 | 0.667 | 1.012 | 1.299 | 1.865 |       |
| 14       | 0.052 | 0.197 | 0.421 | 0.722 | 1.096 | 1.418 | 2.015 |       |
| 15       | 0.055 | 0.212 | 0.453 | 0.777 | 1.180 | 1.538 | 2.165 | 2.972 |
| 16       | 0.059 | 0.227 | 0.486 | 0.832 | 1.264 | 1.659 | 2.315 | 3.150 |
| 17       | 0.062 | 0.243 | 0.518 | 0.888 | 1.348 | 1.782 | 2.466 | 3.327 |
| 18       | 0.066 | 0.258 | 0.515 | 0.944 | 1.433 | 1.906 | 2.618 | 3.504 |
| 19       | 0.069 | 0.273 | 0.584 | 1.000 | 1.519 | 2.032 | 2.769 | 3.679 |
| 20       | 0.072 | 0.289 | 0.617 | 1.056 | 1.604 | 2.158 | 2.922 | 3.853 |
| 21       | 0.076 | 0.304 | 0.650 | 1.113 | 1.690 | 2.286 | 3.075 | 4.027 |
| 22       | 0:079 | 0.320 | 0.683 | 1.170 | 1.776 | 2.415 | 3.229 | 4.200 |
| 23       | 0.082 | 0.335 | 0.716 | 1.227 | 1.862 | 2.545 | 3.383 | 4.372 |
| 24       | 0.086 | 0.351 | 0.749 | 1.284 | 1.949 | 2.676 | 3.538 | 4.543 |
| 25       | 0.089 | 0.367 | 0.783 | 1.341 | 2.036 | 2.808 | 3.691 | 4.713 |
| 26       |       | 0.382 | 0.816 | 1.398 | 2.123 | 2.940 | 3.847 | 4.883 |
| 27       |       | 0.398 | 0.850 | 1.456 | 2.210 | 3.074 | 4.003 | 5.053 |
| 28       |       | 0.414 | 0.884 | 1.514 | 2.298 | 3.209 | 4.159 | 5.221 |
| 29       |       | 0.430 | 0.917 | 1.571 | 2.386 | 3.344 | 4.316 | 5.390 |
| 30       |       | 0.445 | 0.951 | 1.629 | 2.474 | 3.481 | 4.472 | 5.557 |
| 31       |       | 0.461 | 0.985 | 1.688 | 2.562 | 3.618 | 4.630 | 5.724 |
| 32       | ,     | 0.477 | 1.019 | 1.746 | 2.651 | 3.756 | 4.787 | 5.890 |
| 33       |       | 0.493 | 1.053 | 1.804 | 2.739 | 3.894 | 4.944 | 6.056 |
| 34       |       | 0.509 | 1.087 | 1.863 | 2.828 | 4.034 | 5.103 | 6.222 |
| 35       |       | 0.525 | 1.121 | 1.921 | 2.917 | 4.174 | 5.261 | 6.387 |
| 36       |       |       | 1.156 | 1.980 | 3.006 | 4.315 | 5.420 | 6.552 |
| 37       |       |       | 1.190 | 2.039 | 3.095 | 4.456 | 5.580 | 6.716 |
| 38       |       |       | 1.224 | 2.098 | 3.185 | 4.599 | 5.740 | 6.879 |
| 39       |       |       | 1.259 | 2.157 | 3.275 | 4.742 | 5.900 | 7.043 |
| 40       |       |       | 1.293 | 2.216 | 3.364 | 4.885 | 6.060 | 7.205 |
|          | 1     |       |       |       | 1     | 1.000 | 5.000 |       |

積 表 (直径 10cm 毎拔萃)

| 90             | 100    | 110            | 120    | 130    | 140    | 150    | 胸高直径 |
|----------------|--------|----------------|--------|--------|--------|--------|------|
| 90             | . 100  | 110            | 120    | 100    | 140    | 130    | 樹    |
| !              |        |                | !      |        |        |        | m 2  |
|                |        | ļ              |        |        |        |        | 3    |
|                |        |                |        |        | ì      |        | 4    |
|                |        | i              |        |        |        |        | 5    |
|                |        |                |        |        |        |        | ]    |
|                | :      |                |        |        |        |        | 6    |
| 1              |        |                |        |        |        |        | 7    |
|                |        |                |        |        |        |        | 8    |
|                |        |                |        |        |        |        | 9    |
| ļ              |        |                |        |        |        |        | 10   |
|                |        |                | ,      |        |        |        |      |
|                |        | !              | i      |        |        |        | 11   |
|                |        |                |        |        |        |        | 12   |
| i              |        |                |        |        |        |        | 13   |
| 1              | :      |                |        |        |        |        | 14   |
| 3.655          | 4.399  | 5.201          | 6.061  | 6.937  | 7.947  | 8.972  | 15   |
| 0.075          | 4 669  | E E10          | 6 405  | 7 205  | 0.404  | 0.510  | 16   |
| 3.875          | 4.663  | 5.513          | 6.425  | 7.395  | 8.424  | 9.510  | 16   |
| 1.093          | 4.925  | 5.824<br>6.132 | 6.786  | 7.811  | 8.898  | 10.045 | 17   |
| 1.309          | 5.186  | 1              | 7.146  | 8.225  | 9.369  | 10.577 | 1    |
| 1.525          | 5.446  | 6.439          | 7.503  | 8.636  | 9.838  | 11.106 | 19   |
| 1.740          | 5.704  | 6.744          | 7.859  | 9.046  | 10.305 | 11.633 | 20   |
| 1.953          | 5.961  | 7.048          | 8.213  | 9.453  | 10.769 | 12.157 | 21   |
| 5.166          | 6.217  | 7.350          | 8.565  | 9.859  | 11.231 | 12.679 | 22   |
| 5.377          | 6.471  | 7.651          | 8.916  | 10.263 | 11.691 | 13.198 | 23   |
| 5.588          | 6.725  | 7.951          | 9.265  | 10.665 | 12.149 | 13.715 | 24   |
| 5.798          | 6.977  | 8.250          | 9.613  | 11.065 | 12.605 | 14.230 | 25   |
|                |        |                |        |        |        |        |      |
| 6.007          | 7.229  | 8.547          | 9.960  | 11.464 | 13.059 | 14.743 | 26   |
| 5.215          | 7.479  | 8.843          | 10.305 | 11.862 | 13.512 | 15.254 | 27   |
| 6.422          | 7.729  | 9.139          | 10.649 | 12.258 | 13.963 | 15.763 | 28   |
| 6.629          | 7.978  | 9.433          | 10.992 | 12.652 | 14.413 | 16.271 | 29   |
| 6.835          | 8.226  | 9.726          | 11.333 | 13.046 | 14.861 | 16.776 | 30   |
| 7 041          | 8.473  | 10.018         | 11.674 | 13.438 | 15.307 | 17.281 | 31   |
| 7.041<br>7.245 | 8.719  | 10.310         | 12.014 | 13.828 | 15.753 | 17.783 | 32   |
| 7.449          | 8.965  | 10.600         | 12.352 | 14.218 | 16.196 | 18.284 | 33   |
| 7.653          | 9.210  | 10.890         | 12.690 | 14.607 | 16.639 | 18.784 | 34   |
| 7.856          | 9.455  | 11.179         | 13.026 | 14.994 | 17.081 | 19.282 | 35   |
|                | 7.400  | 11.11/         | 10.020 | 11.77T |        | 19.202 |      |
| 8.058          | 9.698  | 11.467         | 13.362 | 15.380 | 17.121 | 19.779 | 36   |
| 8.260          | 9.941  | 11.754         | 13.696 | 15.765 | 17.959 | 20.274 | 37   |
| 8.462          | 10.183 | 12.040         | 14.030 | 16.150 | 18.397 | 20.768 | 38   |
| 8.662          | 10.425 | 12.326         | 14.363 | 16.533 | 18.834 | 21.261 | 39   |
| 8.863          | 10.666 | 12.611         | 14.695 | 16.915 | 19.269 | 21.753 | 40   |

材積表調製業務資料 第1号

付表 5表

広 葉 樹 枝 条 率 表

| 胸高直径         | 枝    | を 率  | 防食毒物 | 枝         | * 率       | Wardruk (V | 枝         | <del></del><br>条 率 |
|--------------|------|------|------|-----------|-----------|------------|-----------|--------------------|
| <b></b> 附同但任 | I    | I    | 胸高直径 | I         | II        | 胸高直径       | I         | П                  |
| 2            | %    | %    | 52   | %<br>30.4 | %<br>43.7 | 102        | %<br>43.9 | %<br>74.6          |
| 4            | 14.1 | 14.1 | 4    | 30.9      | 45.0      | 4          | 44.5      | 75.9               |
| 6            | 15.3 | 15.3 | 6    | 31.5      | 46.2      | 6          | 45.0      | 77.1               |
| 8            | 16.5 | 16.5 | 8    | 32.0      | 47.5      | 8          | 45.5      | 78.4               |
| 10           | 17.8 | 17.8 | 60   | 32.6      | 48.7      | 110        | 46.1      | 79.6               |
| 2            | 19.0 | 19.0 | 2    | 33.1      | 49.9      | 2          | 46.6      | 80.8               |
| 4            | 20.1 | 20.3 | 4    | 33.6      | 51.2      | 4          | 47.2      | 82.1               |
| 6            | 20.6 | 21.5 | 6    | 34.2      | 52.4      | 6          | 47.7      | 83.3               |
| 8            | 21.2 | 22.7 | 8    | 34.7      | 53.6      | 8          | 48.3      | 84.5               |
| 20           | 21.7 | 24.0 | 70   | 35.3      | 54.9      | 120        | 48.8      | 85.8               |
| 2            | 22.3 | 25.2 | 2    | 35.8      | 56.1      | 2          | 49.3      | 87.0               |
| 4            | 22.8 | 26.4 | 4    | 36.3      | 57.3      | 4          | 49.9      | 88.2               |
| 6            | 23.3 | 27.7 | 6    | 36.9      | 58.6      | 6          | 50.4      | 89.5               |
| 8            | 23.9 | 28.9 | 8    | 37.4      | 59.8      | 8          | 51.0      | 90.7               |
| 30           | 24.4 | 30.1 | 80   | 38.0      | 61.0      | 130        | 51.5      | 91.9               |
| 2            | 25.0 | 31.4 | 2    | 38.5      | 62.3      | . 2        | 52.0      | 93.2               |
| 4            | 25.5 | 32.6 | 4    | 39.1      | 63.5      | 4          | 52.6      | 94.4               |
| 6            | 26.1 | 33.9 | 6    | 39.6      | 64.8      | 6          | 53.1      | 95.7               |
| 8            | 26.6 | 35.1 | 8    | 40.1      | 66.0      | 8          | 53.7      | 96.9               |
| 40           | 27.1 | 36.3 | 90   | 40.7      | 67.2      | 140        | 54.2      | 98.1               |
| 2            | 27.7 | 37.6 | 2    | 41.2      | 68.5      | 2          | 54.8      | 99.4               |
| 4            | 28.2 | 38.8 | 4    | 41.8      | 69.7      | 4          | 55.3      | 100.6              |
| 6            | 28.8 | 40.0 | 6    | 42.3      | 70.9      | 6          | 55.8      | 101.8              |
| 8            | 29.3 | 41.3 | 8    | 42.8      | 72.2      | 8          | 56.4      | 103.1              |
| 50           | 29.8 | 42.5 | 100  | 43.4      | 73.4      | 150        | 56.9      | 104.3              |

摘要 【 サワグルミ, カッラ, センノキ, ホホノキ, キハダ, ヤチダモ, シウリザクラ, オヒョウニレ, アサダ, ハルニレ, ヤマナラシ, トネリコ, ウルシ, ニガキ

■ 上記以外の樹種

昭和32年2月25日 印刷

昭和32年3月1日 発 行

発 行

材積表調整業務資料 第1号

青森営林局広葉樹立木材積表調整説明書

農林省林業試験場 編 集 林 野 庁

Щ 名 印刷人

合同印刷株式会社 東京都港区芝三田四国町177 印刷所