材積表調製業務資料 第9号

熊本営林局 ^{モミ}シガ立木材積表調製説明書

昭和33年3月

林

野 庁

次

緒 言	貝
第1 適用地域およびその根拠	1
1. 地 域 の 概 要	
2. 地 域 の 決 定	2
第2 資料の收集	2
1. 資料收集地域······	2
2. 資料收集個所の選定および調査方法	6
3. 幹材積の計算	6
第3 調製方法の決定	20
第4 資料の吟味	25
1. 吟味の方針	25
2. 吟味の方法	25
3. 吟味の結果	26
第5 モミ材 積 式	28
1. 回帰式の計算	28
2. 有 意 性 の 検定	42
3. 10 cm 直径級ごとの回帰係数の差の検定	
第6 ツガ材積式	
1.]回帰式の計算	
2. 標準誤差、重相関係数、偏相関係数	
3. 有 意 性 の 検定・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	
4. 10 cm 直径級ごとの回帰係数の差の検定	-53
第7 樹種間の材積式の比較	•60
第8 材 積 式 の 決定	
1. 修正係数の計算	
2. 材 積 式 の 決定	•64
第9 材積表の適合度	•65
第10 材積表使用上の注意	•66
第11 結 言	
第12 モ ミ 材 積 表	
第13 ツガ材積表	
第14 調製年月日および担当者官氏名	
「附録」現行材積表の適合度の検定	•86

. _____

言

熊本営林局において現在使用中のモミ、ツガ立木材積表は昭和11年10月頃調製されたもので、モミ、ツガ兼用となつており、調製者、調製資料および経緯が不明である。

昭和26年度から全国的に立木材積表の再検討がなされ、26年林野第11231 号通牒 によって 「主要樹種立木材積表調製資料測定要綱」が作成され、その後同30年に「主要樹種材積表調製 要綱」が決定した。

当局においても、昭和27年度より逐次資料収集を行い、材積表の適合度の検定を行った結果、有意な差が見出されたので、要綱に基いて調製をすすめてきた。この間、モミ、ツガ両樹 種間の比較検定を行ったところ、同一推定式を用いられない結果となつたので、それぞれ独自 の式を用いることとし、同32年12月この2表の調製を完了した。

本材積表調製にあたり林試測定研究室長、大友栄松氏、同室粟屋仁志氏の御指導を賜わり、 また資料收集に従事された営林署の各位に対し、深甚の謝意を表わすものである。

1

第 1 適用地域およびその根拠

1. 地域の概要

(1) 位置および面積

九州は日本列島の最南端に位置し、九州本島およびその周囲に散在する大小多数の島嶼からなり、地形は 非常に複雑である。当局管内国有林は九州全域にまたがり主として南九州(宮崎、鹿児島、熊本県下)に多 く、九州全林野面積に対し約21%の503,000haである。

(2) 地 勢

管内国有林の地形は本島の中枢に当る大分、宮崎、熊本、鹿児島県に連互して一大分水嶺をなす九州山脈 が大分、宮崎県界祖母山を起点とし、宮崎、熊本両県界を南走して二分し、一つは宮崎に入つて日向山脈を 形成し、他は熊本、鹿児島両県界に延びて肥薩国境山脈を起し、更に延びて天草諸島を形成する。また阿 蘇、霧島の両火山脈があつて、前記両山系の間に多数の火山を噴出している。すなわち前者は阿蘇山、久住 山、大船山などの峻峰を噴出し更に東へ延びて別府湾頭の由布、鶴見の火山群となり、西は有明海辺に延び て金峰山、雲仙岳などの諸峰を噴出している。一方霧島火山脈は宮崎、鹿児島両県界に高千穂峰、韓国岳を 始めとし27座の火口を有する霧島火山を噴出しており、南に延びて桜島、開開缶を起し、更に南走して屋久 島、奄美大島など数多くの火山群島を作つている。国有林はおおむねこれら山缶地帯の中復以上または渓谷 などにあり、多くの河川の水源となつている。

(3) 地 質

管内の地質は古生層からなる南北の島とその間に挾まれた地溝帯の部分に阿蘇火山帯が墳出することによ つて結ばれたものでさらに霧島火山帯の噴出によつて基本形を形成し、その後有明海の沖積地帯によつて現 形が形成したものと考えられる。また北九州はところどころに山頂から貝類の化石が発見される点などから 考えて隆起したものと考えられる。中央部の九州山系一帯は古生層および中生層からなり、阿蘇火山脈およ び霧島火山脈に接する地方は多く火山灰および火山砂に覆われている。筑紫山系は古生層、第三紀層および 花崗岩からなり、日向山脈は大部分は中生層でなかに古生層および第三紀層を挾み、薩隅諸島は古生層およ び火山岩、花崗岩からなる。

(4) 気 候

九州は温帯圏に属していて、南東から暖流黒潮と対島暖流の影響を受けているから、山岳地帯を除いた低 地は四国南端、紀伊南部および伊豆諸島と同様に温暖である。屋久島、種子島、奄美大島の諸島は日本で亜 熱帯性気候の兆候が見られる地帯である。北九州山脈が中央部を北東から南西に走つているので、冬期シベ リヤから吹く寒風はこの山脈に遮ぎられ、南部宮崎、鹿児島県下の大平洋岸地帯は概して暖かくしかも雨量 がはなはだ多い。また東支那海に面する五島列島、天草諸島の南西部および、こしき島、薩南半島の南岸な どもだいたい前記同様である。日本海に面する北九州の福岡、長崎県地方は対島海流の影響で、寒気は特に きびしくわないが冬季はアジャ大陸から吹いてくる西北風が対島暖流を通過してくるため、湿潤となり積雪 をみることがある。九州山脈と筑紫山脈および雲仙岳などに囲まれた筑紫平野、肥後平野および有明海は内 陸性を帯びその中央部をなす熊本県は天草諸島、宇土半島、金峰山などで暖流のもたらす気流が遮ぎられ、 風が少なくやや大陸性気候を示している。長崎県は著しく海岸線が発達しており、四季を通じて風が多い。 九州の屋根を形作つている久住山、阿蘇山、祖母山、霧島地方および熊本、宮崎県境をなす山岳地方などは 冬季積雪多く夏季も冷凉である。更に瀬戸内海に画する地方は気候温和であるが雨量は最も少ない。

(5)林 況

九州の森林がカシ帯に属していることは衆知のとおりであるが逐次老令天然生林が伐採されている現在で は、国有林以外ではみられないような現状となつた。

当局で行つた植生調査を基にした老令天然生林の植生の概要は次のとおりである。

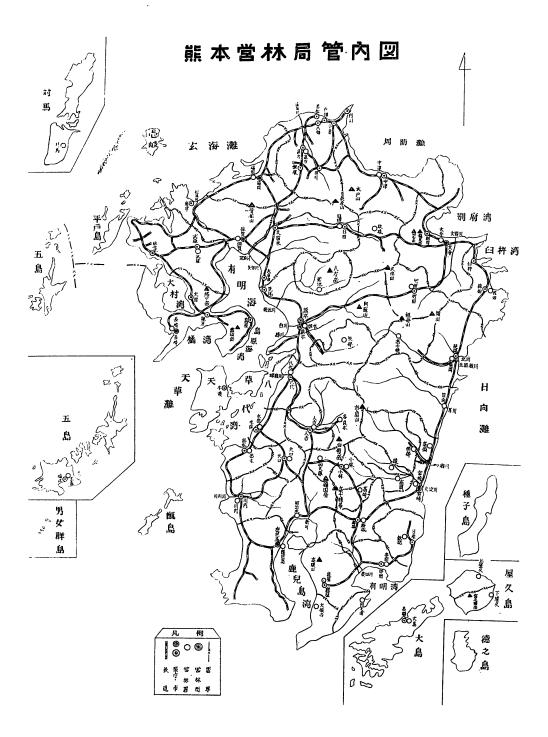
暖帯性下位植生として、九州国有林の大部分を占めていて全域に共通な樹種はカジ類、シイ、タブノキで あつて、これに北九州地方にはアカマツ、南九州地方にはクロマツ、中部九州地方はクロマツ、アカマツが 加わつている。暖帯性下位植生の上部に暖帯性上位植生があるが、全域に共通な樹種はモミ、ツガ、アカガ シ、シデ類、シキミ、ハイノキであつて針葉樹の大径材が多い。また雨植生との間に移行帯植生があるが、 この推移の明瞭でない地域がある。

九州の国有林は暖帯林すなわちカシ帯に含まれるとはいえ、標高によつて温帯性植生が現われるのは勿論 であつて、暖帯性植生と温帯性植生とは垂直的に標高 800~1000m 附近を境に区分されている。

温帯性植生はブナノキ、シデ類、カツラ、カエデ、シキミ、カンバ類等の落葉広葉樹であるが、九州の国 有林を左右するだけの蓄積は有してなく、ただ温帯、暖帯の境界線は九州の国有林を代表する林相の天然生 林が現出しているということで意義が大きい。モミ、ツガの林相も九州の屋根といわれる東西に走る背染山 脈中のこの地帯に生成し、蓄積はモミ約265万パッツガ約415万パ。で管内総量の1割強を占め、高千穂、矢部、 多良木、高鍋、綾、小林、高崎、高岡、加久藤、日向、延岡営林署管内に主としてみられ、なかでも加久藤 管内の大平地方は大平モミとして有名で、モミを主体とする天然生林の一斉林型がみられる。

管内国有林における更新樹種のおも な も の はスギ、ヒノキ、アカマツ、クロマツ、クリ、クヌギ、カシ 類、ケヤキ、クスであるがもつとも大きな比率を示しているのはスギであつて、高温多湿の気象条件とあい まつて他地方にくらべて数倍の成長量を有している。

2, 地 域 の 決 定


生育地の立地条件や地方別の差違によつて、同一胸高直径と樹高をもつ樹木でも樹型が異るのは勿論であ るが、当局管内におけるモミ、ツガの分布は主として九州山脈中復附近の宮崎、熊本両県下にみられ、立地 条件もほぼ類似しているので表を細別して地域的材積端調製の必要を認めないと思われる。したがつて本材 積表は広く熊本営林局管内全域のモミ、ツガを対象としてそれぞれ調製した。

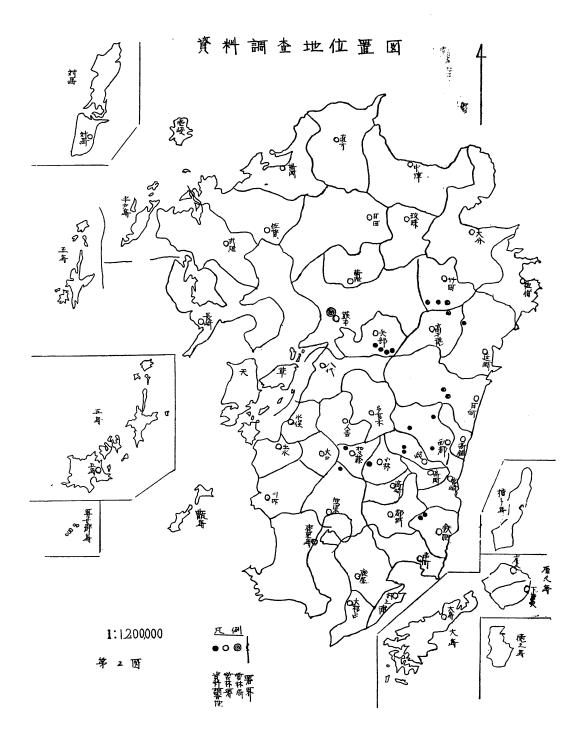
第2资料收集

1. 資料 収算 地域

本表調製のための資料は熊本営林局管内の国有林より収集し、調査個所はモミ22個所、ツガ22個所であり 本数でモミ 984 本ツガ1293本である。

資料收集個所の位置図は第2図のとおりであり、営林署別、経営区別、直径級別の本数を示せば第1表の とおりである。

第1表の1 営林署、経営区別、直径級別本数一覧表


(モミ)

営林署	経営区	6~10	12~20	22~30	32~40	42~50	52~60	62~70	72~80	82~90	92~100	102~	計
矢 部	内大臣			1	10	18	22	18	17	11	11	12	120
竹 田	竹田	23	28	23	11	9	8	10	11	4	3	3	133
延 岡	延岡			1	2		2	2	3	4	2	2	18
高千穂	高千穂	4	36	9	7	8	16	7	7	2	1		97
日向	尾鈴			3	2		1		1	1		2	10
西 都	吹 山		4	1	4	6	5	6	4	8	3	4	45
	茶臼岳				1	2	12	7	4	5	1	4	36
綾	須木			2	6	15	12	6	3	1	2	3	50
小 林	高原					1	3	18	8	27	49	30	136
加久藤	矢 岳				4	3	6	6	12	8	7	3	49
加治木	西霧島				3	3	3	1					10
飫 肥	飫 肥	42			7	32	36	48	42	36	20	17	280
計		69	68	40	57	97	126	129	112	107	99	80	984

第1表の2

(ッ	ガ)
<u>ر</u>	/	~)

営林署	経営区	6~10	12~20	22~30	32~40	42~50	52~60	62~70	72~80	82~90	92~100	102~	計
矢 部	内大臣				3	26	42	18	25	8	9		131
竹田	竹田	42	41	34	53	37	40	48	13	4			312
延 岡	延 岡				2	7	8	6	2	2		1	28
高千穂	高千穂	1	49	21	18	7	3	3					102
日向	尾鈴		1	3	7	8		2	3	3	1		28
西 都	吹 山		10	17	23	24	16	5	2	2	3	1	103
	茶臼岳				2	. 4	1	2	1	1		2	13
綾	須 木		i	16	39	39	36	21	14	10	6	9	190
小 林	高 原					7	11	14	44	24	20	14	134
加久藤	矢 岳			7	10	12	16	21	16	12	3	2	99
加治木	西霧島			1	3	7	6	1	3				21
飫肥	飫 肥			2	18	25	23	23	31	7	2	1	132
₩		43	101	101	178	203	202	164	154	73	44	30	1293

材積調製業務資料 第9号

2. 資料収集個所の選定および調査方法

(1) 収集個所の選定

本表適用対象林分の全域から任意抽出によって決定するのが理想的であるが、伐倒調査などの経費や労力 の関係上、当該年度直営生産実行中の個所について一部は局担当係員が調査し、一部は営林署に依頼してそ の伐採個所から選定収集した。

(2) 調 査 方 法

伐倒木について調製要綱に基いて行つた。測定方法は次のとおりである。

(1) 胸 髙 直 径

胸高直径は幹軸に沿い地上1.2mの位置において幹軸と直角に輪尺によつて、 cm 単位で mm まで測定した。

(1) 樹高および枝下高

樹高は主幹の頂点から地際までの幹長を、枝下高は力枝より地際までの幹長をそれぞれ巻尺をもつて、m 単位で単位以下1位まで測定した。

(ハ) 其の他の必要な因子

幹材積計算に必要な直径、樹皮の厚さ、伐採面の高さ、同直径、年輪数などすべて調製要綱に甚いて測定 した。

3. 幹材積の計算

幹材積は要綱に基いて全体としては2m区分のフーベル区分求積式で算出し、梢端は円錐として計算した。

第	2	表	林	小	班	別	地
~			11.	•		19.9	

	X				画		作		 地	況
県	郡(市)	村 (町)	大字 (字)	営 林 署	経 営 区	林 小 班	業級	地位(地利)	方位、傾斜	基 岩、深 度 土性、結合度 湿 度
熊本	上益城	白 糸	管 (内大臣)	浜 町	内大臣	4961	皆用 1	2(3)	₩ 中~急	石灰岩、中 壌土及砂壌土、軟 適
η	11	11	目 (<i>n</i>)	11	11	53V v	17	11	N、NW 急	頁岩、中 壌土、軟、適
ŋ	ŋ	ŋ	" (")	ŋ	11	56 <i>5</i>	17	ŋ	E 急	石灰岩、粘板岩 砂壌土、中、軟、 適
ŋ	11	11	" (")	η	11	66L v	17	ŋ	SE NE 急	石灰岩、中 壌土、軟、適
大分	直入郡	嫗 岳	神 原 (祖母山)	竹 田	竹田	612	17	3	N E 急	石英安山岩、中 壌 土、軟、潤
η	大 野	長谷川	尾平鉱山	η	η	15 E	η	ŋ	S E 急	<i>り り</i> 植壌土、 <i>1</i> 、1
Ŋ	ŋ	"	上烟 (小河川)	11	11	166,	17	η	1) 1]	り り り り 適
11	小野市	木浦閉	傾山	延 岡	延 岡	17/2	皆用	2(2)	N E 中	古生層、中 礫壌土、軟、適
宮崎	西臼杵	岩 戸	山 裏 (上町谷)	高千穂	高千穂	70 と	η	n(n)	S E 急	粘板岩、中 壌土、軟、適
ŋ	東臼杵	東郷	坪谷 (鎌柄)	美々津	尾 鈴	74/1	17	ŋ		
ŋ	ŋ	11	坪 谷	n	11	753	η	2	N 中	中 砂壤土、軟、湿

況 林 況 一 覧 表

		林						況			
樹	混	林	疎	直	樹	林	林	材		積	
	交歩		密					ha	当	Ŋ	
種	合	令	度	径	高	種	相	針	広	計	
モ ミ ツ ガ 其の他	18 25 57	120 30~260	中			天然	混	140	170	310	24年第6次編成
ッ ず 其の他	41 58	17	11	<u>50</u> 10~150	25 10~35	11	17	199	123	322	ŋ
モ ッ ガ 其の他	9 65 26	80 20~250	11			11	ŋ	90	30	120	η
モ ッ ガ 其の他	13 22 65	80 20~130	η			11	ŋ	75	125	200	η
ッ ガ 其の他	48 52	90 80~140	11	28 8~110	<u>17</u> 2~26	"	η	162	130	292	26年第6次編成
モ ミ ツ ガ 其の他	9 31 60	108 58~158	密	<u>20</u> 6~80	<u>14</u> 6~28	11	11	108	146	254	n
モ ミ ツ ガ 其の他	9 42 49	17	17	<u>22</u> 4~80	<u>14</u> 4~24	11	η	148	120	268	η
モ ミ ツ ガ 其の他	22 39 39	140 80~210	中	32 10~110	<u>15</u> 9~29	11	η	224	103	327	"
モ ミ ツ ガ 其の他	7 20 73	<u>160</u> 60~260	η			11	η	88	190	278	"
モ ミ ツ ガ 其の他	6 5 89	55 25~105	η	 	<u>11</u> 6~17	ŋ	広	28	112	140	η
モ ミ ツ ガ 其の他	15 15 70	190 60~230	ŋ	35 20~45	<u>14</u> 7~18	11	ŋ	164	132	296	η

9

第 2 表 林 小 班 別 地

	X		<u></u>		画		作	t	电	況
県	郡 (市)	村 (町)	大字 (字)	営 林 署	経 営 区	林 小 班	業級	地位(地利)	方位、傾斜	基 岩、深 度 土性、結合度 湿 度
宮崎	東諸県	八代	南 侯 (多羅平)	妻	茶臼岳	30172	皆用 1	2	E 急	砂岩、中 壌土、軟、適
ŋ	児湯	三 納	吹 山	"	吹 山	1865	皆用	11	SW 急	ッ 潤
17	η	η	η	11	η	18/I	η	ŋ	W 急	中 〃 〃
ŋ	ŋ	上穂北	南方	11	η	78 <i>V</i> C	η	3	E 急	11 11 11
ŋ	西諸県	須 木	(抽園)	綾	須 木	5462	皆用 1	2	SW 急	中生層 ッ 壌土、軟、適
η	11	ŋ	(7)	ŋ	11	59 ∖ ∖	ŋ	11	N E 急	11 11 11 11 11
η	小林市	小林市	南西方 巣ノ浦	小林	高原	39¥2	皆用	ŋ	N E 中	輝石安山岩、中 壌土、軟、適
ŋ	西諸県	飯 野	大河平 (〃)	加久藤	矢 岳	313	η	2(2)	S E 中	中 〃 〃
ŋ	南那珂	北鄉	北河内 (板谷)	飫 肥	飫 肥	773	皆用 1	ŋ	N E 中	中生層 <i>1</i> リール 乾
ŋ	ŋ	ŋ	" (")	11	ŋ	7712	ŋ	17	S E 中	11 11 11 11 11
鹿児島	姶 良	牧園	万膳	加治木	加治木	28\$2	皆用	ŋ	SW 緩	ッ ッ ッ 適

况林况一覧表(統)

		林						況			
樹	混	林	疎	直	樹	林	林	材		積	備考
	交 歩		密					ha	当	ŋ	通う
種	合	令	度	径	高	種	相	針	広	計	
モーミ ブ 其の他	32 13 55	130 60~210	中	<u>54</u> 8~134	<u></u> 9~25	天然	混	125	151	276	23年第5次編成
モ ミ ツ ガ 其の他	17 14 69	$\frac{150}{100\sim200}$	"			11	11	138	142	280	23年第4次編成
モ ミ ツ ガ 其の他	10 25 65	$\frac{150}{100\sim250}$	11			11	11	105	150	255	η
モ ミ ッ ガ 其の他	44 16 40	$\frac{100}{50\sim200}$	17			ŋ	11	163	77	240	η
モ ッ ガ 其の他	10 14 76	130 25~190	17	<u>30</u> 4~100	<u>12</u> 4~19	n	"	80	186	266	28年第6次編成
モ ッ ガ 其の他	3 5 92	130 27~190	"	<u>22</u> 4~100	<u>10</u> 4~20	ŋ	広	24	226	250	η
モ ミ ッ ガ 其の他	23 21 56	$\frac{130}{60\sim 260}$	疎	<u>26</u> 10~60	<u>16</u> 8~20	11	混	107	10	117	24年第5次編成
モ ミ ッ ガ 其の他	45 7 48	$\frac{135}{45\sim 165}$	中	28 10~180	<u>15</u> 7~41	n	ŋ	176	155	331	27年第6次編成
モ ミ ツ ガ 其の他	11 3 86	<u>110</u> 90~140	17	<u> </u>	<u>18</u> 2~22	11	n	68	218	286	25年第6次編成
モ ミ ツ ガ 其の他	6 2 92	<u>90</u> 80~140	"	$\frac{36}{4 \sim 66}$	<u>19</u> 2~23	11	広	59	193	252	"
モ ミ ッ ガ 其の他	9 49 42	140 50~220	密			11	混	378	72	450	23年第6次編成

								第	3 表	その	1	直		径	I	階	栢	封	高	i
Hm Dcm	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23
6 8 10 12 14	2	5 1 1	6 3 2 1	7 9 5 4 4	1 6 5 5 1	7 2 3 6	3	1 2 1	1 2											
16 18 20 22 24			1				3	6 2 1	4 4 1	6 2 3 1	2 1 1	1 1	1	1 1 3	1	1	1			
26 28 30 32 34									3	1	1 2 1	1 3 1	1 3	1 1 2 1	1 1	2 1	2 1	3	2	1
36 38 40 42 44												3		3 3 1	2 3 2 1	2 1 2 1	2 2 5 3	3 2 6 3 2	1 2 3 3 3	2 3
46 48 50 52 54													1	1	4 1 1	2 1 1	1 1 2 2 3	3 3 2 1 2	1 3 2 6	3 2 6 3 2
56 58 60 62 64													1	1	2	3 2 1	1	1 2 2 3	1 2 1	5 2 1 4 3
66 68 70																		2	1 2	4 2

12

.

.

	階	牙	Nj	本	:	数		表		(棄刦	前)		(モ	<)						
24	25	26	27	28	29	30	31	32	33	34	35	36	37	38	39	40	41	42	43	計
															:					19 29 21 13 17
																				22 6 10 8 8
l							- - - -													6 4 14 7 9
2 1 1 4	1 1 1		1																	10 15 16 20 20
1 1 7 5 5	1 1 6 1	1 2 4	1 2 2	2	1		1					1								16 16 24 23 28
4 3 4 2 4	5 5 2 1	1 1 3 6 2	6 1 3 4 2	1 2 1 1 3	1 3 6	2 2	1	2 3 1	1	1 1 1							1			32 22 22 31 25
12	1 1 3	4 2 2	2 2	5 1 4	2 3 1	2 5	5	2	2 2 1	2 1 3	1									25 21 27

第3表の1 (続)

Hm Dcm	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23
72 74 76 78 80																		1 2		2 1
82 84 86 88 90																	1		1	1
92 94 96 98 100																				
102 104 106 108 110																				
112 114 116 118 120																				
計	2	7	13	29	18	18	10	13	16	16	8	10	8	20	20	20	27	43	36	47

And the second second second

24	25	26	27	28	29	30	31	32	33	34	35	36	37	38	39	40	41	42	43	탉.
32	1 4 1	2 2 1	3 4 2	1 3 2 1 2	3 3 2 3 1	7 3 4 4	1 1 4 2 5	1 2 2 5	4 1 1	1 2 1	1 2	2 2	1		1					25 22 25 21 19
	1 3 1	1 1 1 1	1 2 1	2 1 3 1	3 4 2 1	1	3 4 2 2 2	6 2 3 5	1 1 1 2	1 1 3	3 4 3 3	3 1 1 5	1 1 1	1						23 17 25 21 21
1		1	1	1	42	11	2 2 1 1 2	4 3 4 2	2 3 2	2 3 3 2 1	2 3 2 1	3 3 6 2	4 2 1 3	1	1 1 1 2			1		28 24 20 16 11
1	1		2	1 1		1	1	1 3 1	2 1 4 1 1	1 2 1	1 2 2	1 1 1 2	2 1 1	2	1	1	12	1		14 14 14 2 7
	1	1	1			1	. 1	1	1	1	3	2 1 1	1	2	2	1			1	5 6 9 4 5
56	43	38	45	40	46	37	45	57	34	35	37	38	20	12	10	2	4	3		984

第3表の2

Hm	1		1				1				·	1		1				1	1	1
Dcm	4	5	6	7	8	9	10	11	.12	13	14	15	16	17	18	19	20	21	22	23
6 8 10 12 14	1	4 3 1	3 8 2	2 9 4 2 1	2 3 3	2 3 3 5	2 4 4	4 2	1 3	1 2							J			
16 18 20 22 24						3 1 1	1 1 3	2 1 4 2	5 3 1	5 5 3 3	2 3 3 2	1 4 6 2 4	3 2 4	1	2	2	1			
26 28 30 32 34									2 1 1	4 2 1 2	2 5 1 3	2 4 3 4 8	4 4 5	2 4 6	3 1 5 6	4 1 2 2	1 2 1 2 4	1 3	1 1 3 1	1 1
36 38 40 42 44									1	2 1 1	1	2 2 1 2 1	4 5 3 1 2	6 5 5 2	4 5 8 5 5	6 4 5 10 4	2 2 3 9	1 2 1 4 5	1 1 3 4 5	1 3 3 2
46 48 50 52 54									1			1 2	1 3 1 1	5 1 3 1	1 2 4 2 2	6 5 8 5 3	5 8 5 5 2	8 8 2 5 6	2 2 7 2 6	1 4 4 3
56 58 60 62 64												1	1	3 1 1	2 1 1 1	2 2 1 3	2 3 4	6 2 1 2	2 2 4 4 3	6 4 2 4 6
66 68 70												-			1	1	1 2 1	3 3 1	1 4 3	2 3 4

(ツ	ガ)
----	----

24	25	26	27	28	29	30	31	32	33	34	35	36	37	38	39	40	41	42	43	44	計
																					10 22 11 21 20
																					17 16 27 16 14
1	1		1																		15 31 25 37 36
2 2 3	1 3 1 3	2 1 1	12	1	2																34 31 40 36 45
3 2 6 6	2 3 2 6 5	3 1 3 1 4	3 2 2	51	1	1		1													38 44 40 43 42
7 3 8 2 3	3 4 2 6 3	4 5 5 7 4	3 3 2 5	1 3 1 3 2	1 2 3	1	2	1 1	1	1	1				1					1	44 35 38 39 32
1 3 2	2 4 3	1 3 5	5 3 3	3 2 3	2 3 3	2 3	222	1													25 36 32

第3表の2(続)

Hm Dcm	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23
72 74 76 78 80														1	1	1	3 1 1	1 3 3	5 2 1 3	2 5 1 2 3
82 84 86 88 90																		1	2 1	1 4 1 2
92 94 96 98 100																			1	
102 104 106 108 110																				1
112 114 116 118 120																				
計	1	8	13	18	8	18	15	15	22	34	23	50	53	55	68	74	73	74	77	82

24	25	26	27	28	29	30	31	32	33	34	35	36	37	38	39	40	41	42	43	44	計
																		. · ·			
2 3 3 5 2	3 6 2 2 2	1 2 4 6 2	2 7 2 3 4	4 1 4 1 1	2 2 3 4	1 1 1	5 2 2 1	2 1 2 2	1 1 1 1	1	1	1									31 40 27 29 27
2 5 1 2	4 2 1	2	3 1 2 2 2	1 1 1 2	2 3	4 1 2 1	1	1 3 2	1 1	1											18 14 11 17 13
1 2 1 2	1	1	3 2 1	1	2 2 1 1	1	1	222	1 2 2	2		2					1				10 10 10 9 5
1 1 1		1 1 1		1	2	1	2 1	2	2	1		1	1								8 6 2 3
		1			. 1		1														1 2 2
90	79	74	69	45	45	26	26	26	15	6	2	5	1		1		1			1	1293

19

.

.

材積調製業務資料 第9号

第3調製方法の決定

材積表調製の理想的方法は簡潔、客観的で、しかも正確なものでなければならない。従来から用いられて いる方法にはいろいろなものがあるが大別して

調和曲線を利用する方法

共線図表を利用する方法

最少自乗法を利用する方法

があるが、いづれもこの3つの条件を十分に満足させるような方法はない。

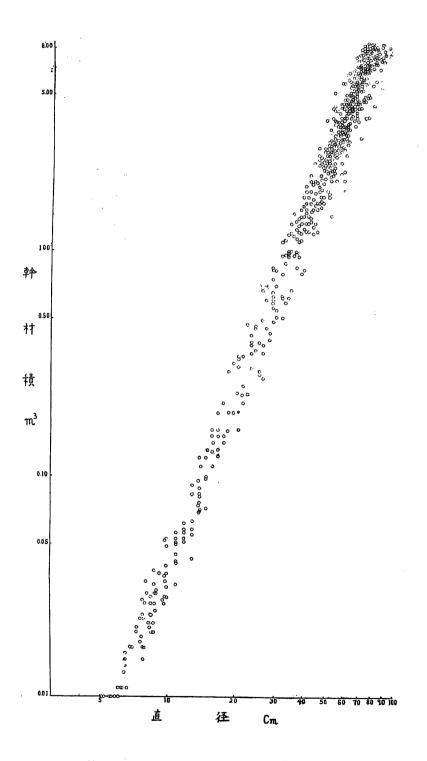
調和曲線を利用する図形的解析法は多数のデータを必要とし、また調和曲線法および共線図表法では曲線 をフリーハンドで適合させる場合に調製者の主観がはいるので影響をおよぼすことが大きい。最小自乗法を 利用する方法は実験式が決定されれば完全に客観的であるという長所がある。なお結果として得られた式は 実際の値と計算値の偏差の平方和が最少になるように資料に適合している。この方法はわが国でも広く採用 され、ほとんどの表がこの方法で調製されている。

したがつて本材積表調製においても以上の理由により最少自乗法を利用する方法を採用した。最少自乘法 は直線型に直せるあらゆる材積方程式に適用できるのであるが、いまモミ、ツガそれぞれ全資料について、 胸高直径対幹材積、樹高対幹材積の関係を対数方眼紙上にプロツトすれば第3~4 図のとおりであり

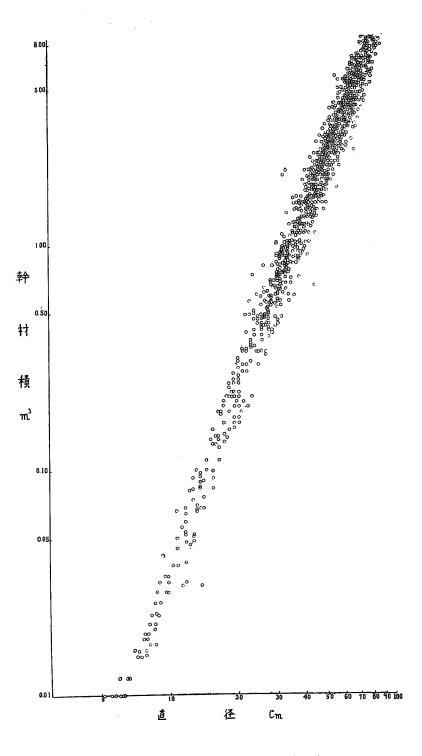
V∽Dbı

V∽Hb₂

ただし V=幹材積 D=胸高直径 H=樹高 b1b2=常数

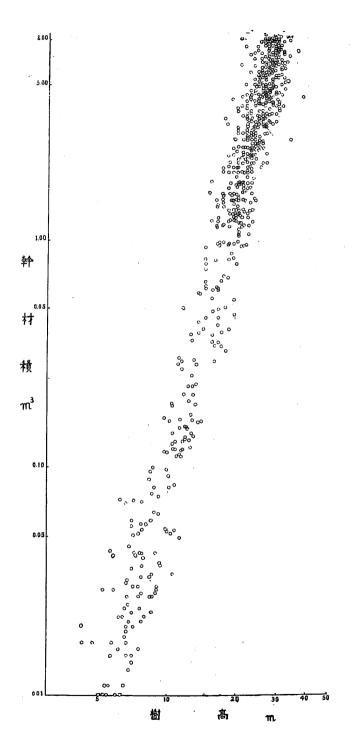

ほぼ直線関係にある。幹材積を胸高直径と樹高の二因子により変化するものとすれば

V∞Db₁Hb₂

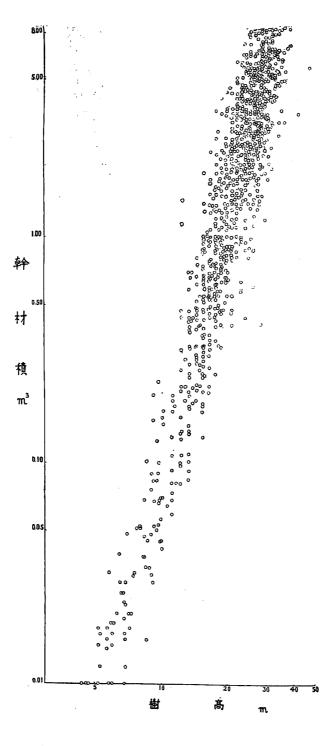

なお種々の材積式について精度の比較、検討を行つて良い適合を示す材積式を採用すべきであるが、本材 積表調製では時間的余裕もなかつたので山本博士が一般的材積表調製に使用されたところの

 $V = 10^a Db^1 Hb^2$

を採用することとした。



第3図の1 直径に対する幹材積の関係(モミ)



第3図の2

(ツガ)

第4図の1 樹高に対する幹材積の関係(モミ)

第4図の2 (ツガ)

第4 資料の吟味

1. 吟味の方針

收集資料の中には測定や材積計算上の誤りや、また一般的傾向から著しくはなれた材積を有する異常資料 を含んでおり、これらの影響により材積式に偏りが生ずるのを避けるため、棄却帯を計算して一般的傾向か ら著しくはずれるものは除外する。

2. 吟味の方法

異常資料の棄却は実験式を一次の式に変換し回帰平面からの変動を考慮して行うが、この場合の有意水準 は調製要綱に基いて1%とした。すなわち採用した材積式

 $V = 10^{a} D^{b1} H^{b2}$

を一次の式に変換するために雨辺の対数をとれば

$$\log V = a + b_1 \log D + b_2 \log H$$

 $\Rightarrow \log V = Y \log D = X_1 \log H = X_2$

とすれば上式は次のように表わすことができる。

 $Y = a + b_1 X_1 + b_2 X_2$

したがつて棄却帯は次式であらわされる。

 $Eyx_1x_2 = t[Syx_1x_2^2\{1-1/n+|c|\}]^{\frac{1}{2}}$

$$|\mathbf{c}| = \left((\mathbf{x}_1 - \overline{\mathbf{x}}_1) (\mathbf{x}_2 - \overline{\mathbf{x}}_2) \right) \begin{pmatrix} C_{11}C_{12} \\ C_{12}C_{22} \end{pmatrix} \begin{pmatrix} \mathbf{x}_1 - \overline{\mathbf{x}}_1 \\ \mathbf{x}_2 - \overline{\mathbf{x}}_2 \end{pmatrix}$$

=
$$[C_{11}(x_1 - x_1)^2 + C_{22}(x_2 - x_2)^2 + 2C_{12}(x_1 - x_1)(x_2 - x_2)]$$

 $\therefore \quad \text{Eyx}_{1}x_{2} = t \cdot \text{Syx}_{1}x_{2} \{1 - (1/n + C_{11}(x_{1} - \overline{x_{1}})^{2} + C_{22}(x_{2} - \overline{x_{2}})^{2} + 2C_{12}(x_{1} - \overline{x_{1}})(x_{2} - \overline{x_{2}}))\}^{\frac{1}{2}}$

ただし C11, C12, C22; ガウスのC乗数 n; 資料数

 x_1, x_2 ; x_1x_2 の平均値 t; Student の t 分布の値

実験式 Y=a+b1X1+b2X2 を適用し最小自乗法により常数を求める。胸高直径、樹高、材積の対数は6桁を使用し、材積の対数は便宜上 V×100の対数を用いた。

[モミ]

C乗数は

```
C<sub>11</sub>=0.229260
C<sub>22</sub>=0.426880
C<sub>12</sub>=-0.238637
回帰係数は b<sub>1</sub>=1.83305573
b<sub>2</sub>=1.06613095
回帰からの偏差の分散および標準誤差
Syx<sub>1</sub>x<sub>2</sub><sup>2</sup>=0.0031663674
Syx<sub>1</sub>x<sub>2</sub>=0.05627
```

ゆえに棄却帯は

 $Eyx_{1}x_{2} = (2.581)(0.05627)\{1 - (1/984 + (0.229260)(x_{1} - 1.85489)^{2} + (0.426880)(x_{2} - 1.44741)^{2}\}$

.

$$+2(-0.238637)(x_1-1.85489)(x_2-144741)]^{\frac{1}{2}}$$

〔ツガ〕

 $C_{11} = 0.055678$ $C_{22} = 0.143453$ $C_{12} = -0.079065$ $b_1 = 2.01473842$ $b_2 = 0.75952429$ $Syx_1 x_2 = 0.0038327460$ $Syx_1 x_2 = 0.06191$

 $\mathbf{Eyx_{1}x_{2}} = (2.57582)(0.06191)\{1 - (1/1293 + (0.055678)(x_{1} - 1.65889)^{2} + (0.143453)(x_{2} - 1.30474)^{2}\}$

1

$$+2(-0.079065)(x_1-1.65889)(x_2-1.30474))^{\frac{1}{2}}$$

上式によつて全資料について計算した結果、回帰からの偏差 $dyx_1x_2(=Y - \hat{Y})$ が Eyx_1x_2 を越えた場合この資料は回帰の一般的傾向から外れた異常なものとして棄却する。この結果棄却された資料はモミ25本 ッガ38本である。

3. 吟味の結果

收集資料モミ984本ツガ1293本中よりそれぞれ異常資料として25本38本を除いた結果、モミ959本ツガ1255 本を本材積表調製の資料とした。

吟味の結果棄却された資料の一覧表およびそれを除いた資料の直径階、樹高階別本数表と材積表は第4~ 6表のとおりである。

直	径	樹	高	幹	材	積	同	対	数	計	 算		回帰;	 からの偏差
I	D	н			v		log	v	(Y)	log	٧'	(Ŷ)	log	(V-V')
	cm 7 . 0		m 4.3		0.0	m³ 0167		0.	2227		0.	0726		0.1501
	18.2	1	3.0		0.1	1395		1.	1446		1.	2681		-0.1235
	22.1	1	3.2		0.2	2062		1.	3143		1.	4352		-0.1209
	26.8	1	1.8		0.2	2670		1.	4265		1.	5522		-0.1257
	27.1	1	6.0		0.3	3510		1.	5453		1.	6784		-0.1331
	29.3	1	9.4		0.4	4040		1.	6064		1.	8172		-0.2108
	30.6	1	9.8		0.5	5370		1.	7300		1.	8611		-0.1311
	30.0	1	5.0		0.7	7410		1.	8698		1.	7380		0.1318
	31.2	1	8.4		0.5	5000		1.	6990		1.	8491		-0.1501

第4表の1 棄却資料一覧表 (モミ)

第4表の1 棄却資料一覧表 (モミ) (続)

	×***				
直径	樹高	幹材積	同对数	計算值	回帰からの偏差
D	н	v	log V (Y)	$\log V' (\dot{Y})$	log (V-V')
36.0	17.6	0.6570	1.8176	1.9508	-0.1332
38.0	19.8	0.8270	1.9175	2.0409	-0.1234
51.0	24.4	1.6170	2.2087	2.3696	-0.1609
54.8	26.0	4.1920	2.6224	2.4720	0.1504
55.8	25.5	4.9220	2.6921	2.4774	0.2147
61.5	20.9	1.9957	2.3001	2.4628	-0.1627
61.5	22.3	2.1983	2,3421	2.4928	-0.1507
70.0	30.7	3.9620	2.5979	2.7439	-0.1460
71.0	28.3	3.7015	2.5684	2.7175	-0.1491
82.0	22.0	8.1270	2.9099	2.7155	0.1944
86.0	28.5	10.7240	3.0304	2.8733	0.1571
91.5	35.3	17.7167	3.2484	3.0217	0.2267
93.0	31.3	6.7370	2.8285	2.9790	-0.1505
105.0	36.8	9.9110	2.9961	3.1506	-0.1545
109.0	33.9	8.6450	2.9368	3.1445	-0.2077
109.0	33.3	9.7546	2.9892	3.1340	-0.1448

第4表の2 (ツガ)

直	径	樹高	幹	材	積	同		数 (Y)	計	算 • \v/	值 (Y)	回帰からの偏差 log (V-V')	
	D	H		v		108	3 V	(1)	108	5 V	(1)	10g (v - v)	
	cm 11.0	n 9.6	L	0	m³ .0660		0	.8195		0	.6870	0.1325	5
	13.7	7.4		0	.0310		0	.4913		0	.7932	-0.3019	ð
	19.0	9.5		0	2284		1	.3587		1	.1618	0.1969)
	20.8	14.8		0	1733		1	.2388		1	.3872	-0.1484	1
	22.1	9.0		0	1974		1	.2953		2	.0357	-0.7404	1
	23.0	16.2		0	4780		1	.6794		1	.5050	0.1744	1
	23.9	14.1		0	2060		1	.3139		1	.4928	-0.1789	ð
	24.1	19.2		0	.5520		1	.7419		1	.6019	0.1400	2
	27.5	19.0		0	.7240		1	.8597		1	.7139	0.1458	3
	28.1	19.2		0	.7910		1	.8982		. 1	.7363	0.1619	ə
	28.8	27.1		0	4122		1	.6151		1	.8715	-0.2564	4
	30.0	14.4		0	.6730		1	.8280		1	.6986	0.1294	4
	30.3	18.4		0	.4090		i	.6117		1	.7882	-0.1765	5
		l	ł			I			I			1	

		弗4夜02	(27)		
直径	樹高	幹材積	同对数	計算値	回帰からの偏差
D	н	v	log V (Y)	$\log V' (\dot{Y})$	log (V-V')
31.8	16.0	0.5606	1.7487	1.8744	-0.1257
33.3	15.4	0.8920	1.9504	1.8121	0.1383
35.0	19.3	2.0360	2.3088	1.9301	0.3787
35.8	11.8	2.1150	2.3253	1.7876	0.5377
36.0	14.8	0.5504	1.7407	1.8672	-0.1265
37.9	15.8	0.5760	1.7604	1.9338	-0.1734
39.8	18.1	0.6970	1.8432	2.0214	-0.1782
43.6	19.3	0.8810	1.9450	2.1224	-0.1774
44.0	25.0	1.1750	2.0700	2.2157	-0.1457
44.6	17.9	1.1010	2.0418	1.9159	0.1259
46.6	19.3	0.6390	1.8055	2.1806	-0.3751
47.1	22.5	1.2350	2.0917	2.2405	-0.1488
52.0	23.4	1.6180	2.2090	2.3401	-0.1311
54.0	23.4	1.7660	2.2470	2.3731	-0.1261
60.5	17.5	1.7560	2.2445	2.3767	-0.1322
61.8	24.8	2.3470	2.3705	2.5103	-0.1398
64.0	26.0	2.5880	2.4130	2.5565	-0.1435
65.0	28.2	2.5666	2.4094	2.5969	-0.1875
67.0	26.2	2.9534	2.4703	2.5991	-0.1288
69.0	23.0	5.3440	2.7279	2.5819	0.1460
69.5	28.8	3.3546	2.5256	2.6624	-0.1368
72.6	20.2	2.6456	2.4225	2.5836	-0.1611
75.0	22.6	3.3260	2.5219	2.6491	-0.1272
109.0	30.3	8.2144	2.9146	3.0729	-0.1583
110.0	26.1	5.2798	2.7226	3.0317	-0.3091

第4表の2 (ツガ) (続)

第5モミ材積式

1.回帰式の計算

棄却済資料 959 本を用いて材積式を計算すると次のとおりである。

(モミ) 第5表の1 直径樹高階別本数

Hm		1	1	1	1	1		1	1			1		1	1		}] .	1	1
Dcm	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23
6810 246820 246830 246840 246850 246860 2468870 2468800 2468800 2468800 2468800 2468800 2468800 2468800 2468800 2468800 2468800 2468800 2468800 2468800 2468800 2468800 2468800 24688000 2468800000000000000000000000000000000000	4	5 5 1 1		7 7 9 5 4 4	8	9 7236		11 1 2 1 6 2 1	12 1 2 4 4 4 1 2 1	13 ⁶ 61 3 2 1 1	14 ¹ 2 1 1 2 1	15 1 1 1 2 1 3	16 1 3 1 1	17 1 1 1 1 1 1 1 1 1 1 1 1 1	18 1 1 1 1 1 1 2 1 4 1 2 1 4 1 2	19 1 1 1 1 1 1 2 1 1 2 1 1 3 2 1 1	20 1 1 1 1 2 2 3 1 1 1 2 2 3 1 1	21 33226 32332212222 212222211222221122222112222211222222	22 2 1 1 2 3 3 3 1 3 2 6 1 1 1 2 3 1 3 2 1 1 2 3 1 3 1 3 2 1 1 1 2 3 1 3 1	23 1 23 3 2 6 3 2 5 2 1 4 3 4 2 2 1
8 100 2 4 6 8 110 2 4 6 8 120																				
120 計	1	7	13	29	18	18	10	13	15	14	8	9	7	20	18	19	25	42	34	47

;

(モミ) 第5表の1 直径樹高階別本数 (続)

Hm	1																		(.	
Dcm	24	25	26	27	28	29	30	31	32	33	34	35	36	37	38	39	40	41	42	43	44	45	<u></u> 計
6 8 10																							19 28 21
2 4 6 8 20																							13 17 22 5 10
2 4 6 8 30																							7 8 5 3 11
2 4 6 8 40	1 2 1	1																					6 9 9 14 16
2 4 6 8 50	1 4 1 1 7	1 1 1 1	1	1	2								1										20 20 16 16 24
2 4 6 8 60	4 5 4 3 4	6 1 5 5 2	2 3 1 3	2 2 6 1 3	1 1 2 1	1	2	1	2 3		1							1					22 27 31 22 22
2 4 6 8 70	2 4 1 2	1 1 1 3	6 2 4 2 2	4 2 2 2	1 3 5 1 4	3 6 2 3 1	2 2 5	1	1	1 2 2 1	1 1 2 1 3	1											29 25 25 21 26
2 4 6 80	3	1 4 1	2 2 1	3 4 2	3 2 1 2	3 3 2 3 1	7 3 4 4	1 1 4 2 5	1 2 2 5	4 1 1	1 2 1	1 2	2 2	1		1							24 22 25 21 19
2 4 6 8 90		1 3 1	1 1 1	1 2 1	2 1 3 1	3 3 2 1	1 3	3 4 2 2 2	6 2 2 3 5	1 1 1 2	1 1 3	3 4 3 3	3 1 1 5	1 1 1 1	1								22 17 24 21 21
2 4 6 8 100	1		1	1	1	4 2 1	1	2 1 1 1 2	4 3 4 2	2 3 2	2 3 3 2 1	1 3 2 2 1	3 3 6 2	4 2 1 3	1 2	1 1 1 2			1 1				27 23 20 16 11
2 4 6 8 110	1	1		2	1 1		1	1	1 3 1	2 1 4 1	1 2	1 2 2	1 1 1 2	2	2	1	1	12	1				14 14 13 2 5
2 4 6 8 120		1	1	1			1	1	-1 1	1	1	3	2 1 1	1	2	2	1			1			5 6 9 4 5
計	55	43	36	45	39	45	37	43	57	33	34	36	38	19	12	10	2	4	3	1			959

(ツガ) 第5表の2 直径樹高階別本数表

		1																	1	
Hm	4	5	6	7	8	9	10	·11	12	13	14	15	16	17	18	19	20	21	22	23
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1	431	3822	2 9 4 2	2 3 3 3	2 3 3 5 3 1 1	2 3 4 1 1 2	4 2 2 1 4 2 2 1 4 2 2 1 4 2 2 1 4 2 2 1 1 4 2 2 1 1 4 2 2 1 1 4 2 1 1 1 1	1 35 3 3 1 2 1 1	1 2 5 5 3 4 2 2 1 1 2 1 1 1	2 3 3 1 2 5 3 1 1 1 1	1 4 5 2 4 2 4 2 4 2 4 3 4 7 1 2 1 1 2 1 1 2 1 1 2 1	3 2 3 4 4 7 5 4 4 3 1 2 1 3 1 1 1 1 1	1 1246 655 2513 1311 1 1	2 3 1 5 5 6 4 5 7 5 4 1 2 4 2 2 2 1 1 1 1 1 1 1	1 2 2 5 4 5 5 3 5 5 3 5 3 2 2 1 3 1 1 1 1 1	1 1 2 4 2 2 3 3 9 5 8 5 5 2 2 3 4 1 2 1 2 1 2 4 2 2 3 3 9 5 8 5 5 2 2 3 4 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1	1 3 1 2 1 4 5 8 8 2 5 6 6 2 2 1 2 3 3 1 1 3 3 1 1 3 3 1	$\begin{array}{c}1\\1\\3\\1\\1\\1\\3\\4\\5\\2\\2\\7\\2\\6\\2\\2\\4\\4\\3\\1\\4\\3\\5\\2\\1\\3\\2\\1\end{array}$	$\begin{array}{c}1\\1\\1\\3\\2\\1\\3\\4\\3\\2\\6\\4\\2\\3\\3\\2\\5\\2\\3\\1\\4\\1\\1\\2\end{array}$
計	1	8	13	17	8	17	13	15	21	34	21	47	50	55	64	68	72	74	77	77

(ツガ) 第5表の2 直径樹高階別本数表 (続)

Hm Dcm	24	25	26	27	28	29	30	31	32	33	34	35	36	37	38	39	40	41	42	43	44	45	計
6 8 10 2 4							i																10 22 11 20 19
6 8 20																							17 16 25
2 4 6 8 30	1	1																					15 11 15 28 23
2 4 6 8 40	2 2 2	1 1 3	2 1	1	1																		36 35 31 30 39
2 4 6 8 50	3 3 2	1 2 2 3 2	1 3 1 3	2 3 2 2	1	2	1												1				36 42 37 43 40
2 4 6 8 60	6 6 7 3 8	6 5 3 4 2	1 4 4 5 5	3 3 2	5 1 1 3 1	1 1 2 3	1		1 1 1	1	1					1							42 41 44 35 37
2 4 6 8 70	2 3 1 3 2	5 3 2 4 3	7 3 1 2 5	5 5 3 3	3 2 2 2 3	2 3 2	1 1 2 3	2 1 2 2	1	1		1									1		38 31 24 35 30
2 4 6 80	2 3 5 2	3 6 2 2 2	1 2 4 6 2	2 7 2 3 4	4 1 4 1 1	2 2 3 4	1 1 1	5 2 2 1	· 2 1 2 2	1 1 1 1	1	1	1										30 40 26 29 27
2 4 6 8 90	2 5 1 2	4 2 1	2	- 3 1 2 2 2	1 1 1 2	2	4 1 2 1	1 1 1	1 3 2	1	1												18 14 11 17 13
2 4 6 8 100	1 2 1 2	1	1	3 2 1	1	2 2 1 1	1	1	2 2 2	1 2 2	2		2 1					1					10 10 10 9 5
2 4 6 8 110	1 1 1		1 1		1	2	1	2 1	2	2	1		1	1									8 6 2 1
2 4 6 8 120			1 1			1 1		- 1	-														1 2 2
計	90	77	71	68	44	44	25	26	26	15	6	2	5	1		1	Í	1			1		125

(モミ) 第6表の1 直径、樹高階別平均材積表(棄却後)

~ 1	Hm		1	1	· · · · · ·	1		1		
Dcm	4	5	6	7	8	9	10	11	12	13
						!		<u> </u>		
6 8 10	0.020	0.0086 0.0169 0.0291	0.0105 0.0182 0.0351	0.0136 0.0212 0.0311	0.0162 0.0243 0.0389	0.0303 0.0381	0.0473	0.0336	0.0490	
2 4 6			0.0427	0.0450 0.0633	0.0488 0.0704	0.0585 0.0853	0.0897 0.1301	0.0833	0.1143	0.1543
8 20							0.1643	0.1883	0.1627	0.1490 0.2105
2 4 6 8 30								0.2288	0.2969 0.2838	0.2410 0.3577 0.3795
2 4 6 8 40									0.4990	
2										
4 6 8 50										
2 4 6 8										
60 2 4										
4 6 8 70										
2 4 6 8 80										
2 4 6 8										
90 2 4										
2 4 6 8 100										
2 4 6 8 110										
8 110 2							•			
2 4 6 8 120										
120					-					

		•	(モミ)		第6表の	1 直	径、	樹	高 階	別
Hm Dcm	14	15	16	17	18	19	20	21	22	23
6 8 10			. <u>.</u>							
2 4 6 8 20	0.1574 0.2801		•	0.2870	0.3371	0.3210				
2 4 6 8 30	0.2302 0.3880 0.5070	0.3278 0.4057 0.4522 0.6348	0.3843 0.5461	0.3394 0.4060 0.4904 0.6000 0.8119	0.3893	0.8230	0.4670			0.6567
2 4 6 8 40	0.5780	0.6120		0.6121 0.9314 1.0909	0.9809	0.6760 0.9555 1.1910	0.8721 1.2557 1.0913	0.9750 1.1572 1.1710 1.2834	0.9422 0.9460 1.1711 1.2112 1.3256	1.2199
2 4 6 8 50			1.2340 1.5830	1.2213 1.3760 1.5320	1.2855 1.2023 1.5819 1.5253	1.2485 1.2917 1.8245 1.6770	1.3231 1.4068 1.5970 1.6073 1.7523	1.4896 1.5673 1.6745 1.8323 2.3322	1.5844 1.7464 1.8260 1.9740 1.8613	1.7040 1.7757 1.8540 2.2411
2 4 6 8 60				1.4450	1.4488 2.0625	2.1422 2.0989 2.7068	2.0304 2.1811 2.5651	1.7530 2.1938 3.1690 3.0630 3.0686	2.3836 2.2024	2.5226 2.5942 2.7625 2.9551 2.7830
2 4 6 8 70			1.8447			3.5450		2.7055 4.0072	2.8170 3.5950 4.0056 4.0979	3.4971 3.2562 3.7151 3.8290
2 4 6								3.1157		4.3397 4.9509
8 80 2 4 6							4.3256	3.7672		
8 90 2 4 6 8 100		•							6.2350	7.5141
8 100 2 4										
6 8 110										
2 4 6 8 120										

熊本営林局モミ、ツガ立木材積表調製説明書

平均材積表(棄却後)(続)

24	25	26	27	28	29	30	31	22	33	34
1.0628 1.2915 1.7212	1.5430									
1.4562 1.8272 2.1817 2.5780 2.3910	1.8805 1.5114 2.8398 2.2010	2.4937	2.1280 2.2230	2.3390						
2.3515 2.5903 2.8771 2.7566 3.1740	2.5772 2.3130 2.8501 3.1832 3.2418	2.6840 2.9812 3.3250 3.2850	2.6805 2.7349 3.5484 3.7046 3.4864	3.0080 3.2000 3.2750 3.7219	3.3720 3.4248	3.7145	3.6680 3.3643	4.2065 3.9660		4.022
3.0785 3.4601 4.6748 3.8736	2.9472 4.1507 4.0981 4.0051	3.4505 3.8805 4.1924 4.6236 5.4746	3.6371 4.1245 3.8925 5.1749	3.2980 3.9700 4.5654 4.5860 4.9172	4.2774 4.4316 4.5477 4.4869 5.6720	3.8775 5.0172 5.0180	4.5540 5.0908	5.4250 5.0525	5.9070 5.0060 5.4495 6.3040	5.439 4.823 5.975 6.081 6.384
4.9123 4.7382	5.0203 5.3945 6.1364	4.5954 5.4543 5.3730	5.6656 5.4324 5.2773	5.3932 5.5844 7.6396 5.4689	5.8296 6.0391 6.3351 6.3012 6.5001	5.6316 6.1059 6.9250 6.2801	5.7518 7.1740 7.1479 6.4100 7.1206	6.1830 7.1425 6.9130 7.3419	7.0665 7.3300 6.4710	7.068 6.609 7.864
	5.3482 6.7454 9.2830	5.5275 7.2007 9.6157	6.6478 6.7865 7.8458	7.4379 8.5957 7.6488 8.0541	7.2326 7.2556 7.7171 6.8124	7.6015 7.6203	7.7457 8.2732 7.3731 8.1310 8.4440	8.5161 7.4000 9.5025 8.8383 9.7860	7.2850 8.3060 9.0542 9.1322	8.617 6.969 9.494
6.9337 9.5750		7.5198	8,9360		9.0243 8.4318 8.4810	9.8563 11.1502	10.0493 10.8092 8.5901 7.6758	8.6731 10.1158 9.7489 10.6572	10.2954	11.287 10.753 11.469 12.952
7.5721	8.2450		9.2669	8.9631 9.7481 8.3450		11.9483	11.6120 13.1590 11.7950	11.3590 10.3760 11.2930	12.8385 13.6651 14.5447 12.3506 12.7560	10.811 15.646 12.831
		10.0140			12.3296	17.0000		15.5478 14.6245 15.5790	11.9660	10.920 18.349
		12.3140					12.1755			

材 積 調 製 業 務 資 料 第9号

(モミ) 第6表の1 直径、樹高階別平均材積表(棄却後)(続)

Hm			1	1	1	1	1		1
Dcm	35	36	37	38	39	40	41	42	43
6		<u>,</u>			<u>t</u>	1	<u> </u>		
8 10									
2 4									
6 8 20									
2 4 6									
6 8 30									
2 4									
6 8 40									
2 4									
6 8 50		2.8370							
2		2.0370							
4 6 8									
60							4.3690		
2 4 6	5.2490			· · ·					
8 70							-		
2 4	6.3580	6.8025			7.2425				
6 8 80	8.4540	8.3644	8.4560						
2 4	9.7570	9.2020	8.5430	10.7600					
6 8 90	9.0930 9.8577 10.3553	9.7120 9.8810 11.1658	11.8312 10.1140	11.9504					
2 4	10.4670 12.1812	11.0608 11.8144	11.6107 10.4610	10.5424	10.7480 11.6789			13.1670 15.0740	
6 8 100	12.6727 11.0039 10.6764	11.1865 12.5810	14.9314 12.4129	12.1445	15.0497 13.3368				
2 4	13.5855 12.2544	14.3208 10.6320	15.0106		14.9635		12.0060 16.0025	16.2588	
6 8 110	16.0871	12.7798 14.9040	15.0162	13.7017 16.6084		19.8786			
2		12.6487							
4 6 8	14.2210	15.7508 18.4772	14.9392	12.6347 14.7450	17.7162 22.3870				18.1790
120	15.9716		18.9984	17.7750	22.0010	15.3250			10.1770

熊本営林局モミ、ツガ立木材積表調製説明書

(ツガ) 第6表の2 直径、樹高階別平均材積表(棄却後)

Hm	1	1	1			<u> </u>	1	1	1	
Dcm	4	5	6	7	8	9	10	11	12	13
6 8 10	0.0060	0.0083 0.0167	0.0107 0.0176	0.0111 0.0195 0.0267	0.0348	0.0223 0.0330	0.0430			
2 4 6 8 20		0.0306	0.0356	0.0500	0.0449 0.0570	0.0476 0.0733 0.1030 0.1548	0.0516 0.0735 0.1030 0.1535 0.1627	0.0680 0.0834 0.1023 0.1295 0.1865	0.0814 0.0971 0.1272 0.1544 0.2307	0.0928 0.1070 0.1293 0.1681 0.2358
2 4								0.1881	0.2210	0,2243
6 8 30									0.3745	0.3407 0.4152 0.4070
2 4 6 8 40									0.4430 0.4700	0.4688 0.7005 0.6230 0.6950
2 4 6 8 50										1.0919
2 4 6 8 60									1.4278	
2 4 6 8 70										
2 4 6 8 80										
2 4 6 8 90										
2 4 6 8 100										
2 4 6 8 110										
2 4 6 8 120										

材積調製業務資料 第9号

(ツガ)

第6表の2

谊 径、

別 Hm 14 15 17 18 19 20 21 22 23 16 Dcm 6 8 10 2 4 6 0.1338 0.1851 8 0.2035 0.2512 20 0.2337 0.2467 0.2171 2 0.2916 0.2908 0.3219 0.3349 4 0.2890 0.3144 0.3446 0.4030 0.4782 0.4612 0.3955 0.5028 6 0.3586 0.3704 0.4573 0.5857 0.5276 0.4485 8 0.4312 0.4412 0.4819 0.4605 0.4720 0.6295 30 0.4877 0.4975 0.5581 0.5901 0.7941 0.6499 0.5311 0.6998 0.8798 0.8759 2 0.5810 0.6330 0.8381 0.7675 0.8441 0.8207 0.8569 0.9127 0.8979 0.9586 4 0.6463 0.7171 1.1060 0.6690 0.8849 0.9230 0.8182 0.7621 0.8567 0.7829 0.8941 0.8202 1.0390 6 0.9501 8 0.9161 0.9235 0.9451 1.0917 1.0390 1.0767 1.2335 1.0140 1.0758 0.8120 0.9997 1.0516 1.0686 1.1052 1.1302 1.2661 40 0.8460 1.1151 1.3592 1,1937 1.2210 1.4004 2 0.9039 1.1248 1.2334 1.3115 1.5312 1.3260 1.3430 4 1.0024 1.0880 1.2357 1.3657 1.5306 1.4948 1.7395 1.2840 1.3754 1.5920 1.5107 1.4530 1.4635 1.5430 6 1.8665 1.6266 1.2961 1.3077 1.4632 1.6654 1.6446 1.5729 1.7335 1.8107 8 1.7399 1.6500 1.8604 50 1.3660 1.6641 1.5129 1.6770 1.8074 2.0003 1,9381 1.5020 1.9801 1.7170 1.8802 1.8918 2 2.1893 4 1.4880 1.7619 1.7611 2.1490 2.3855 2.1919 1.9960 1.8053 2.0053 2,5055 2.3231 2.3415 1.8667 2.1125 2.1740 2.5664 6 2.2710 2.1666 2.0245 3.0050 8 2.6124 2.5617 2,2672 2.6920 2.6340 2.5040 2.8455 2.7542 2.3810 60 2.3330 2 2.3697 2.7135 3.2900 3.1782 3,1979 2.7929 3.3746 4 3.2264 6 2.5518 3.5690 2.9150 3.6360 3.6765 8 3,5030 2,9335 3.4109 3.4688 3.8703 3.4521 3.3826 4.7897 3.9337 4.0057 70 3.6203 4.3420 4.0956 2 2.8833 3.7468 3.9552 4 4.4880 3.8164 3.6150 4.1066 4.0955 4.3530 4.3207 6 3.6137 4.2290 4.4162 8 4.3580 80 5.4802 4.7381 2 5.6150 4.8530 4 5.1911 5.0500 5.6140 6 8 5.8870 90 5.8670 5,9880 2 4 6 5.8520 8 100 2 6.3990 4 6 8 110 2 4 6 8 120

熊本営林局モミ、ツガ立木材積表調製説明書

平均材積

表 (棄却後) (続)

24	25	26	27	28	29	30	31	32	33	34
0.5832	0.6080									
0.9053 1.1679 1.4261	0.8770 1.0847 1.3186	1.5175 1.5664	1.5072	1.1800						
1.6551 1.9543 2.1997	1.4718 1.8002 1.9559 2.0488 1.8823	1.3740 1.7581 2.3770 2.3077	1.4658 1.9800 1.9780 2.5181	1.9255	1.9163 2.2840	1.9670		•		
2.2006 2.4248 2.5644 2.9141 2.9926	2.2880 2.3836 2.7540 2.6868 3.4179	2.3833 2.6255 2.7638 3.0328 3.1497	2.9556 2.9980 3.2892	2.6358 2.6836 3.3920 3.3901 3.0336	2.9580 2.9990 3.4127 3.1845	2.4873		3.2350 2.8450 3.2210	3.6176	3.2390
3.5805 3.4090 3.4720 3.6912 4.4535	3.0004 3.3743 3.5851 3.6440 4.8050	3.4031 3.2913 3.8070 3.9275 4.6495	3.7825 4.2591 4.2239 4.7294	3.5722 3.9123 3.5697 4.9257 4.5282	4.1099 4.4290 4.2756	3.1460 4.2187 3.6163 4.4216	4.1420 4.6535 4.5630 4.9434	4.7286 4.7405	4.9183	
4.8458 4.5170 4.8371 4.8058 6.1996	4.0110 4.4303 4.7752 5.5903 5.9480	4.8748 4.7162 5.1346 5.5256 6.2164	5.5061 4.8911 6.1206 5.5912 6.3781	5.0788 5.9139 5.6214 6.2734 5.9490	4.9186 5.0625 5.9953 6.4399	5.2184 5.3406 5.2236 6.2461	6.1134 6.7918 6.6820 5.9020	5.3347 6.1146 6.2749 6.3911	5.7359 6.0537 6.1770 6.1305	6.5955
5.1310 5.6878 6.1750 •6.6173	5.3153 6.0410 5.8510	7.7524 7.1160	5.9960 6.8523 6.5024 7.7965 6.8083	7.2951 7.6236 7.5895 7.0827	7.0537 6.7984	7.0089 6.7500 7.6347 7.3476	6.7051 7.8584 9.4303	6.6847 8.4151 8.3170	8.6810 8.2059	8.4030
6.4180 8.0970 7.6990 8.6950	8.2950 7.7411	8.1540	7.3514 7.4830 8.2310	8.1191	8.3806 8.2831 9.1310 9.6060	8.5423 7.4070	9.6236 8.3259	9.0670 9.7287 10.5881	10.1841 10.0678 9.9661	10.4803
7.1290 8.6180 9.5000		8.9520 8.5170		8.2150 10.5578	9.9285 8.9798	9.4625 12.4561	10.3440 10.4350	10.4500	11.5205	10.2487
		9.3950 12.0220			10.7970 10.6870		13.3263			

材 積 調 製 業 務 資 料 第9号

(ツガ) 第6表の2 直径、樹高階別平均材積表(棄却後)(続)

Hm Dcm	35	36	37	38	39	40	41	42	43	44
6 8 10										
2 4 6 8 20										
2 4 6 8 30										-
2 4 6 8 40										
2 4 6 8 50								•		
2 4 6 8 60					3.5119					
2 4 6 8 70	5.3690									5.6030
2 4 6 8 80	6.8980	7.0010								
2 4 6 8 90										
2 4 6 8 100		8.5603 11.5873					13.5200			
2 4 6 8 110		13.5334	11.3943							
2 4 6 8 120										

(1) 平方和、積和の計算

	n=959	X 1	X 2	Y
	和	1637.899286	1301.120215	2258.047975
	平 均	1.707924	1.356747	2.354586
	1. SX12など	2891.252086483942	2280.565284485730	4090.422305966121
	2. 補正項	2797.407790489374	2222.214672730622	3856.574729933520
X 1	3. Sx12など	93.844295994568	58.350611755108	233.847576032601
	4. √ Sx1 ² など	9.685560	61.206347	235.040443
	5.相関係数		0.953343	0.994925
	1. SX22など		1805.224791329204	3212.685575185523
	2. 補正項		1765.290733974605	3063.599443912737
X_2	3. Sx22など		39.934057354599	149.086131272786
	4. √ Sx2 ² など		6.319340	153.352049
	5. 相関係数			0.972182
.	1. SY ²			5905.660247016663
	2. 補正項			5316.768151617936
Y	3. Sy ²			588.892095398727
	4. V Sy ²			24.267099

(2) 回帰係数の計算

(1)の数値を用いて簡略 Doolittle 法で回帰係数を計算する。

		b ₁	b 2	G	計	check
-	1)	93.84429599	58.35061176	233.84757603	386.04248378	233.84757603
Ι	2)		39.93405735	149.08613127	247.37080038	149.08613127
π	3)	93.84429599	58.35061176	233.84757603	386.04248378	386.04248378
Π	4)	1	0.62178112	2.49186776	4.11364888	4.11364888
Ħ	5)		3.65274862	3.68412305	7.33687167	7.33687167
Ш	6)		1	1.00858927	2.00858927	2.00858927
	8)	7) を 4) に	44. J	$b_1 = 1.86474599$	<u>.</u>	<u> </u>
	6)	7)を4)に	代入	DI = 1.00474399		
	7)			b ₂ = 1.00858927		

すなわち回帰係数は 回帰常数は

回帰用数は $a = \overline{Y} - b\overline{X}_1 - C\overline{X}_2$

 $b_1 = 1.86474599$ $b_2 = 1.00858927$

=-2.198658

ゆえに回帰方程式は

 $\mathbf{\hat{\gamma}} = -2.198658 + 1.864746 \mathbf{X}_1 + 1.008589 \mathbf{X}_2$

2. 標準誤差、重相関係数、偏相関係数

回帰に帰因する平方和

$$S\hat{y}^2 = b_1 Sx_1 y + b_2 Sx_2 y$$

=586.43300197

回帰からの偏差平方和

$$Sdyx_{1}x_{2}^{2} = Sy^{2} - S\hat{y}^{2}$$

=2.45909343

推定の誤差の分散と標準誤差

$$Syx_1x_2^2 = Sdyx_1x_2^2/n-3$$

$$= 0.0025722734623431$$

 $Syx_1x_2 = 0.05071759$

重相関係数

$$R^{2} = S\hat{F}^{2}/Sy^{2}$$
$$= 0.9958242037$$

R = 0.997910

偏相関係数

$$\Upsilon yx_{1}x_{2} = \frac{\Upsilon yx_{1} - \Upsilon yx_{2}\Upsilon x_{1}x_{2}}{\sqrt{(1 - \Upsilon yx_{2}^{2})(1 - \Upsilon x_{1}x^{2})}}$$

= 0.963117
$$\Upsilon yx_{2}x_{1} = \frac{\Upsilon yx_{2} - \Upsilon yx_{2}\Upsilon x_{1}x_{2}}{\sqrt{(1 - \Upsilon yx_{1}^{2})(1 - \Upsilon x_{1}x_{2}^{2})}}$$

= 0.779490

2. 有意性の検定

(1) 回帰係数の有意検定

前項(2)で計算された回帰係数 b₁=1.86474599, b₂=1.00858927 について b₁=0, b₂=0 という仮説を たてて有意性を検定する。b₁, b₂ の標準偏差をそれぞれ Sb₁, Sb₂ とすると

$$Sb_{1} = Syx_{1}x_{2} \sqrt{C_{11}}$$

= 0.01724905
$$Sb_{2} = Syx_{1}x_{2} \sqrt{C_{22}}$$

= 0.02653544

ゆえに b1については

 $tb_1 = b_1/Sb_1$

b2については

 $tb_2 = b_2 / Sb_2$ = 38,00914061** ゆえにこの tb1, tb2 の値は t 表の 0.01%の値と比較して著しく大であるので、99%の確率で回帰係数 が0であるという仮説を捨てる。すなわち回帰係数はきわめて有意である。

(2) 回帰式の有意検定

これは重回帰全体としての有意性を検定することであつて、それには回帰による平均平方が回帰によつて は説明のつかない項の平均平方(測定誤差がないとすれば各樹木の形状その他の原因によるもの)に比べて 大きいかどうかをFを使つて検定する。

変重	か 因	自由度	平	ガ	和	平	均	平	方
	帰	2	586	.4330	0197	293	.216	5009	9
推定の) 誤差	956	2	2.45909343		0	.002	5722	735

F=293.21650099/0.0025722735

```
=113991.18367078**
```

この結果重相関係数はきわめて有意であり、したがつて重回帰はきわめて有意である。

(3) 偏相関係数の有意検定

偏相関係数 $\Gamma yx_1x_2 = 0.963117 \Gamma yx_2x_1 = 0.779490$ に対しこのいづれも0であるという仮説をたてて 検定を行う。これには計算値と相関係数表の値と比較する。

 $Tyx_1x_2 = 0.963117^{**} > 0.077$

 $Tyx_2x_1 = 0.779490^{**} > 0.077$ df 956

いづれも著しく有意であり p=0 の仮説は捨てられる。

3. 10cm 直径級毎の回帰係数の差の検定

樹高または直径に対する材積の関係を知るため、これを対数方眼紙にプロットした場合、樹高対材積、直 径対材積が直線関係を示すのはある限られた範囲についていえるもので、したがつて材積式を別々に求める 必要がある。ここでは調製要綱に基き一応資料を 10cm 直径級に分け各直径級の材積式を求め、その間の差 を統計的検定を行い、差のなかつた直径級を一括して材積式を求める。ただし112cm以上は資料が少ないの でその前の直径級と一括して102cm以上とした。

(1) 10cm直径級別相関係数、回帰係数

各直径級別相関係数は次表のとおりである。

第7表の1 相 関 係 数

$1_{x_1x_2}$	T x ₁ y	T x ₂ y	直径級	$\mathbf{T}\mathbf{x}_1\mathbf{x}_2$	Tx1y	Tx2y
0.541842	0.943326	0.728755	62~70	0.294108	0.563760	0.771071
0.745422	0.939759	0.889201	72~80	0.056295	0.286368	0.803120
0.295676	0.833440	0.707684	82~90	0.192548	0.417316	0.748681
0.183281	0.655623	0.753694	92~100	0.047017	0.246290	0.703093
0.305324	0.686323	0.699137	102~	0.162165	0.409545	0.647971
0.217285	0.507664	0.779472	6~	0.953343	0.994925	0.972182
	0.541842 0.745422 0.295676 0.183281 0.305324	0.541842 0.943326 0.745422 0.939759 0.295676 0.833440 0.183281 0.655623 0.305324 0.686323	0.541842 0.943326 0.728755 0.745422 0.939759 0.889201 0.295676 0.833440 0.707684 0.183281 0.655623 0.753694 0.305324 0.686323 0.699137	0.541842 0.943326 0.728755 $62 \sim 70$ 0.745422 0.939759 0.889201 $72 \sim 80$ 0.295676 0.833440 0.707684 $82 \sim 90$ 0.183281 0.655623 0.753694 $92 \sim 100$ 0.305324 0.686323 0.699137 $102 \sim$	0.541842 0.943326 0.728755 62~70 0.294108 0.745422 0.939759 0.889201 72~80 0.056295 0.295676 0.833440 0.707684 82~90 0.192548 0.183281 0.655623 0.753694 92~100 0.047017 0.305324 0.686323 0.699137 102~ 0.162165	$1.1.12$ $1.1.12$ $1.1.12$ $1.1.12$ $1.1.12$ $1.1.12$ $1.1.12$ $1.1.12$ $1.1.12$ 0.541842 0.943326 0.728755 $62 \sim 70$ 0.294108 0.563760 0.745422 0.939759 0.889201 $72 \sim 80$ 0.056295 0.286368 0.295676 0.833440 0.707684 $82 \sim 90$ 0.192548 0.417316 0.183281 0.655623 0.753694 $92 \sim 100$ 0.047017 0.246290 0.305324 0.686323 0.699137 $102 \sim$ 0.162165 0.409545

簡略 Doolittle 法で計算した各直径級別回帰係数は次表のとおりである。

直径級	Ъ ₁	b ₂	直径級	b ₁	b ₂
6~10	2.01106303	0.76499538	62~70	1.73920426	1.00434583
12~20	1.87583835	0.92725609	72~80	1,21352204	1.22505710
22~30	2.03562110	1.11125145	82~90	1.60562436	1.05946156
32~40	1.88274316	1.13643301	92~100	1.58848142	1.10347630
42~50	1.81695769	0.92824778	102~	1.18970683	0.99332325
52~60	1.55860505	1.05300977	6~	1.86474599	1.00858927

第7表の2 回 帰 係 数

(2) 10cm直径級別回帰に帰因する平方和など。

第 8 表

直径級	Sŷ²	Sdyx ₁ x ₂ ²	Syx ₁ x ₂ ²	R
6~10	3.51634376	0.15835310	0.00243620	0.989048
12~20	3.54208804	0.12323895	0.00192561	0.983045
22~30	0.80139990	0.06273820	0.00202381	0.963015
32~40	0.58061067	0.10637697	0.00208582	0.919323
42~50	0.68914701	0.24798769	0.00266653	0.857541
52~60	0.80187242	0.30006800	0.00247990	0.853048
62~70	0.81061043	0.31702435	0.00257743	0.847856
72~80	0.54896671	0.23154292	0.00214392	0.838656
82~90	0.44791375	0.25413240	0.00249149	0.798757
92~100	0.28853883	0.21540661	0.00229155	0.756677
102~	0.31617894	0.29767693	0.00402266	0.717684
6~	586.43300197	2.45909343	0.05071759	0.998954

(3) 全直径級を一括した場合の回帰係数間の差の検定

イ、分散の一様性の検定

回帰係数間の差の検定には各直径級間の分散が一様であるという前提が必要であるので、三つ以上の分散 の比較に用いられるところのバートレットの検定法により検定する。

第 9 表

直径級	Sdyx ₁ x ₂ ²	n	fr = n-3	Syx 1 x 2 ²	$\log Syx_1x_2^2$	fr log Syx ₁ x ₂ ²	1/fr
6~10	0.15835310	68	65	0.00243620	-2.613287	- 169.863655	0.01538462
12~20	0.12323895	67	64	0.00192561	-2.715432	- 173.787648	0.01562500
22~30	0.06273820	34	31	0.00202381	-2.693830	- 83.508730	0.03225806
32~40	0.10637697	54	51	0.00208582	-2.680723	-136.716873	0.01960784
42~50	0.24798769	96	93	0.00266653	-2.574053	-239.386929	0.01075269
52~60	0.30006800	124	121	0.00247990	-2.605566	-315.273486	0.00826446
62~70	0.31702435	126	123	0.00257743	-2,588813	-318.423999	0.00813008
72~80	0.23154292	111	108	0.00214392	-2.668791	-288.229428	0.00925926
82~90	0.25413240	105	102	0.00249149	-2.603541	-265.561182	0.00980392
92~100	0.21540661	97	94	0.00229155	-2.639870	-248.147780	0.01063830
102~	0.29767693	77	74	0.00402266	-2.395486	- 177.265964	0.01351351
	(g²)		(f)			(Σfr log Syx ₁ x ₂ ²)	(Σ1/fr)
	2.31454612	959	926			-2416.165674	0.15023774

 $S^2 = 0.00249951$ log $S^2 = \overline{3}.3978548 = -2.6021452$

log S²f=-2409.5864552 X²=2.3026[-2409.5864552+2416.165674] =15.149 補正項 C=1+1/3(10)[0.15323774-0.00107991] =1.00507193 補正されたX²=15.149/1.0051

$$= 15.072$$

X²表の自由度10でこの値に相当する P(x²) は0.10より大きいから分散が一様であるという仮説は捨てられない。

ロ、回帰係数間の差の検定

$\sum_{i=1}^{2} (Sx_1^2) i = 1.393580878199$	$\sum_{i=1}^{1} (Sx_1y)i = 3.472548445871$
$\sum_{i=1}^{1/2} (Sx_2^2) i = 4.159648132963$	$\sum_{\substack{i=1\\i=1}}^{i'} (Sx_2y) i = 5.927814931926$
$\sum_{i=1}^{1} (\mathbf{Sx}_1 \mathbf{x}_2) i = 0.953661386171$	$\underset{i=1}{\overset{i}{\succeq}}$ (Sy ²) $i = 14.658216565497$

この値から簡略 Doolittle 法により回帰係数を求めると、

 $b_1' = 1.79882278$ $b_2' = 1.01266909$ 第10表の1 予備的分散分析表

変重	か因	自由度	平	方	和	
回	帰	22	12.34367045			
誤	差	926	2.31454612			
	t	948	14.65821657			

第10表の2	完成し	た分散分析表

変動因	自由度	平	方	和	平	均	平	方
全回帰	2	12	2.2494	41421				
回帰間差	20	C	0.0942	25624		0.0	047	1281
回帰計	22	12	2.3436	67045				
誤 差	926	2	2.314	54612		0.0	024	9951
計	948	14	.6582	21657				

F = 0.00471281/0.00249951 d.f 20, 926

=1.89>F0.05=1.58 有意差あり

回帰係数間に有意差があるので全径級を一括できない。ゆえに順次他と大きく異る係数をもつ直径級を除いて検定してみる。

(4) 12cm以上を一括した場合

イ、回帰係数間の差の検定

10の直径級の平均された回帰係数は

b₁′=1.72427917

 $b_2' = 1.04912217$

第11表の1 予備的分散分析表

変動因		自由度	平	和		
回	帰	20	8	8.8279	92670	
誤	差	861	2.15619302			
Ē	t _.	881	10.98351971			

第11表の2 完成した分散分析表

変動因	自由度	平 方 和	平均平方
全回帰	2	8.76768851	
回帰間差	18	0.05963819	0.00331323
回帰計	20	8.82732670	
誤 差	861	2.15619301	0.00250429
計	881	10.98351971	

F = 0.00331323/0.00250429 d.f 18, 861

=1.323<F0.05=1.58 有意差なし

P、回帰平面間の高さの差の検定

回帰係数間に有意差のないことが認められたので、回帰平面間の高さに差があるかどうかを検定する。10 の直径級の資料を込みにした回帰係数を求めると

bı	″ == 1	.840878 13
b ₂	″ = 1	.03971034

ł

変動因		自由度	平	方	和	
П	帰	2	286.86610758			
回帰	間差	18	0.05963819			
誤	差	870	2.21100630			
Ħ	ł	890	289.13675207			

 $S\hat{y}^2 = 286.86610758$

Sy² = 289.13675207

 $Sdyx_{1}x_{2}^{2} = 2.27064449$

左表の誤差には回帰平面の高さの差に帰因する平方和と各直 径級ごとの回帰からの偏差平方和の合計、すなわち原因不明 (主として資料自身の生物変動に因るもの)の平方和が含まれ ているので、これを2つの部分に分ける。

		自由度	平 方 和	
誤	差	870	2.21100630	
原因不	下明	861	2.15619302	(–
平面間	『差	9	0.05481328	

第12表の2 完成した分散分析表

変動因	自由度	平 方 和	平均平方	
回帰	2	286.86610758		F=0.00609036/0.00250429
回帰間差	18	0.05963819		=2.432>F0.05=1.89
平面間差	9	0.05481328	0.00609036	
原因不明	861	2.15619302	0.00250429	
≣†	890	289.13675207		

(5) 12~100cmを一括した場合

イ、回帰係数間の差の検定

第13表の1 予備的分散分析表

$b_1' = 1.75293202$	変動	为因	自由度	平	方	和
$b_2' = 1.04995661$	回	帰	18	8	8.511	14776
	誤	差	787		1.8585	51608
	11 ¹ 10	F	805	10	0.3696	66384

第13表の2 完成した分散分析表

変動因	自由度	平方和	平均平方
全回帰	2	8.46594890	
回帰間差	16	0.04519886	0.00282493
回帰計	18	8.51114776	
誤 差	787	1.85851608	0.00236152
計	805	10.36966384	

ロ、回帰平面間の高さの差の検定

$b_1 " = 1.85060381$		Sŷ² = 253.82239088
b ₂ "=1.03299575	•	Sy ² = 255.76849524

第14表の 1	予備的分散分析表
---------	----------

自由度	, 7	方	和
2	25	3.822	39088
16		0.045	19886
795		1.900	90550
813	25	5.768	49524
	2 16 795	2 25: 16 0 795	2 253.822 16 0.045 795 1.900

		自由度	平 方 和	
誤	差	795	1.90090550	
原因	不明	787	1.85851608	(-
平面	間差	8	0.04238942	

 $Sdyx_1x_2^2 = 1.94610436$

第14表の2 完成した分散分析表

変動因	自由度	平 方 和	平均平方
回 帰	2	253.82239088	
回帰間差	16	0.04519886	
平面間差	8	0.04238942	0.00529868
原因不明	787	1.85851608	0.00236152
- 11	813	255,76849524	

F = 0.00529868 / 0.00236152	d.f 8, 787
=2.24>F0.05=1.95	有意差あり

(6) 12~90cmを一括した場合

イ、回帰係数間の差の検定

第15表の1 予備的分散分析表

		変	動因	自由度	翆	方	和
1	$b_1' = 1.76065419$						
. 1	$b_2' = 1.04462576$	回	帰	16	8	3.2226	50892
	•	誤	差	693		1.643	10948
			計	709	¢	9.865	71840

第15表の2 完成した分散分析表

変動因	自由度	平方和	平均平方
全回帰	2	8.17857328	
回帰間差	14	0.04403564	0.00314540
回帰計	16	8.22260892	
誤 差	693	1.64310948	0.00237101
計	709	9.86571840	

ロ、回帰平面間の高さの差の検定

 $b_1 " = 1.84970787$

b₂"=1.02776134

 $S^{2} = 215.99722783$ $Sy^{2} = 217.72135652$ $Sdyx_{1}x_{2}^{2} = 1.72412869$

第16表の1 予備的分散分析表

変重	动 因	自由度	率	方	和
亘	帰	2	21	5.9972	22783
回帰	間差	14	(0.0440	03564
誤	差	700	1	.6800	09305
a fi	ł	716	217	7.7213	35652

	自由度	平 方 和	
誤 差	700	1.68009305	
原因不明	693	1.64310948	(-
平面間差	7	0.03698357	

第16表の2 完成した分散分析表

変動因	自由度	平方和	平均平方	
回帰	2	215.99722783		F=0.00528337/0.0023
回帰間差	14	0.04403564		=2.23>F0.05=2.02
平面間差	7	0.03698357	0.00528337	
原因不明	693	1.64310948	0.00237101	
計	716	217.72135652		

(7) 22~90cmを一括した場合

イ、回帰係数間の差の検定

第17表の1 予備的分散分析表

b ₁ ′ = 1.75911154	変重) 因	自由度	ञ्च	方	和
$b_{2}' = 1.06423979$	回	帰	14	4	4.680	52089
	誤	差	629		1.519	87053
	alla	ł	643	e	5.200	3 9 142

第17表の2 完成した分散分析表

変動因	自由度	平方和	平均平方	
全回帰	2	4.64228952		F =0.00318595/0.00241633
回帰間差	12	0.03823137	0.00318595	=1.32 <f0.05=1.76< td=""></f0.05=1.76<>
回帰計	14	4.68052089		
誤 差	629	1.51987053	0.00241633	
計	643	6.20039142		

ロ、回帰平面間の高さの差の検定

 $b_1 " = 1.85561338$ $b_2 " = 1.06110377$ $S_{2}^{2} = 79.17326676$ $Sy^{2} = 80.75368322$ $Sdyx_{1}x_{2}^{2} = 1.58041646$

第18表の1 予備的分散分析表

変重	り 因	自由度	平	和			
回	帰	2	79.17326676				
回帰	間差	12	0.03823137				
誤	差	635	1.54218509				
1	t	649	80.75368322				

		自由度	平 方 和	
誤	差	635	1,54218509	
原因	不明	629	1.51987053	(-
平面	間差	6	0.02231456	

第18表の2 完成した分散分析表

回帰係数間および回帰平面間の高さに差のないことが認められたので、この直径級は同一推定式によつて 幹材積の推定を行つてよいことが判つた。

(8) 92cm以上を一括した場合

イ、回帰係数間の差の検定

第19表の1 予備的分散分析表

b ₁ '=1.28118042	変!	動因	自由度	平	方	和
$b_1 = 1.26118042$ $b_2 = 1.04194963$	回	帰	4	(0.6042	71777
	誤	差	168	(0.5130	08354
		针	172		1.1178	30131

第19表の2 完成した分散分析表

変動因	自由度	平方和	平均平方		
全回帰	2	0.60151868		F=0.00159955/0.00305407	d.f 2,
回帰間差	2	0.00319909	0.00159955	=0.524 <f0.05=3.04< td=""><td></td></f0.05=3.04<>	
回帰計	4	0.60471777			
誤 差	168	0.51308354	0.00305407		
計	172	1.11780131			

d.f 168, 2

念のためこれの逆数を求めると

F = 1.91 < F0.05 = 19.49

有意差なし

ロ、回帰平面の高さの差の検定

b_1 "=1.47797423	$S\hat{p}^2 = 1.01467231$
b ₂ "=1.03970648	$Sy^2 = 1.53409809$
	$Sdyx_1x_2^2 = 0.51942578$

第20表の1 予備的分散分析表

変	動因	自由度	平	方	和
回	帰	2		1.014	67231
回帰	間差	2		0.003	19909
誤	差	169		0.516	22669
	計	173		1.534	09809

第20表の2 完成した分散分析表

変動因	自由度	平	方	和	平	均	平	方
回帰	2	1.0	0146	7231				
回帰間差	2	0.0	0031	9909				
平面間差	1	0.0	0031	4315		0.0	0314	4315
原因不明	168	0.9	5130	8354		0.0	030	5407
計	173	1.	5340	9809				

したがつてこの直径級は同一推定式を用いても差支えないことが判つた。

(9) 6~20cmを一括した場合

イ、回帰係数間の差の検定

第21表の1 予備的分散分析表

	-					
	変重	力因	自由度	平	方	和
$b_1' = 1.96906669$						
b ₂ ′=0.83918418	回	帰	4		7.0584	43180
	誤	差	129	(0.281	59205
	計		133	7.3400238		02385

第21表の2 完成した分散分析表

変動因	自由度	平 方 和	平均平方	
全回帰	2	7.05336266		F =0.00253457/0.00218288
回帰間差	2	0.00506914	0.00253457	=1.16 <f0.05=3.06< td=""></f0.05=3.06<>
回帰計	4	7.05843180		
誤 差	129	0.28159205	0.00218288	
計	133	7.34002385		
			1	

ロ、回帰平面間の高さの差の検定

b₁"=2.00087261

b₂"=0.83305879

 $S^{2} = 22.83459293$ Sy² = 23.12223389 (–

0.28159205 (-

変動因	自由度	平方和
回帰	2	22.83459293
回帰間差	2	0.00506914
誤 差	130	0.28257182
計	134	23.12223389

第22表の2 完成した分散分析表

変動因	自由度	平 方 和	平均平方	
回帰	2	22.83459293		F = C.00097977/0.00218288
回帰間差	2	0.00506914		=0.449 <f0.05=3.91< td=""></f0.05=3.91<>
平面間差	1	0.00097977	0.00097977	念のためこれの逆数を求める
原因不明	129	0.28159205	0.00218288	F=2.23 <f0.05=254< td=""></f0.05=254<>
計	134	23.12223389		

したがつてこの直径級は同一推定式を用いても差支えないことが判つた。

以上の検定の結果、6~20cm、22~905m、92cm以上の直径級がそれぞれ同一推定式を用いて幹材積を推 定して差支えないことが判つた。これら各直径級の回帰係数はそれぞれ b″、c″を用いるが、回帰常数を求 めると < 00 0 174051

6~20 cm	a = -2.174351
22 ~ 90 cm	a =-2.2564115
92 cm~	a = -1.4720660

ゆえに材積式は次のようになる。

直径級	材	積	式	
6~20	$\hat{\mathbf{Y}} = 2.000873 \mathbf{X}$	1+0.8330592	X ₂ -2.174351	
22~90	$\hat{\mathbf{Y}} = 1.85561342$	X₁+1.06110	38X ₂ -2.2564	115
92~	$\hat{\mathbf{Y}} = 1.47797422$	X1+1.03970	65 X₂ — 1.4 7206	660

第6ッガ材積式

1. 回帰式の計算

棄却済資料1255本を用いてモミと同様の方法で計算した結果は次のとおりである。

 $b_1 = 1.95820716$

 $b_2 = 0.86590597$

a = -2.200035

ゆえに回帰方程式は

 $\stackrel{\wedge}{\mathbf{Y}} = -2.200035 + 1.958207 \mathbf{X}_1 + 0.865906 \mathbf{X}_2$

2. 標準誤差、重相関係数、偏相関係数

 $S_{2}^{2} = 483.65703502$ $Sdyx_{1}x_{2}^{2} = 2.80185591$ $Syx_{1}x_{2}^{2} = 0.0022379040814696$ $Syx_{1}x_{2} = 0.04730649$ R = 0.99712 $Tyx_{1}x_{2} = 0.977560$ $Tyx_{2}x_{1} = 785927$

3. 有 窻 性 の 検 定

(1) 回帰係数の有意検定

 $Sb_1 = 0.01192597$ $tb_1 = 164.19688797^{**}$ $Sb_2 = 0.01925374$ $tb_2 = 44.97339062^{**}$

回帰係数はきわめて有意である。

(2) 回帰式の有意検定

変 動 因	自由度	平方和	平均平方		
回帰	2	483.65703502	241.82851751	F =10806C.26831534**	d.f 2, 1252
推定の誤差	1252	2.80185591	0.0022379041		

重回帰はきわめて有意である。

(3) 偏相関係数の有意検定

 \mathbf{T} yx₁ x₂ = 0.977560**>0.077

 \mathbf{T} yx₂x₁ = 0.785927**>0.077

偏相関係数はいずれもきわめて有意である。

4. 10cm 直径級毎の回帰係数の差の検定

(1) 10cm直径級別、相関係数、回帰係数

第23表相関係数

直径級	$\mathbf{T}\mathbf{x}_1\mathbf{x}_2$	r x ₁ y	r _{2y}	直径級	Tx1x2	T x ₁ y	Tx 2 y
6~10	0.67886840	0.96383788	0.79708957	62 ~7 0	0.07647372	0.52700492	0.64418389
12~20	0.67531826	0.95114225	0.83232894	7 _. 2~80	0.14806880	0.49661257	0.73907194
22~30	0.33646762	0.80965566	0.69632528	82 ~ 90	0.12430102	0.38709212	0.77630784
32~40	0.27365182	0.75090172	0.71172775	92~100	0.04023384	0.31857399	0.72262550
42~50	0.06014762	0.64328645	0.64182644	102~	0.24087174	0.29316150	0.70649149
52~60	0.21595650	0.61786995	0.70662946	6~	0.89698808	0.99243882	0.93284860

材積調製業務資料 第9号

第 24 表 回 帰 係 数

直径級	bı	b 2	直径級	bı	b 2
6~10	2.06847718	0.67053304	62~70	2.13738012	0.84878521
12~20	2.11995210	0.89690933	72~80	2.07100479	0.89264818
22~30	1.74111819	0.88700398	82~90	1.53957698	1.07055473
32~40	1.95685504	0.85124850	92~100	1.75858537	0.86462882
42~50	2.07330157	0.82703479	102~	2.05667867	1.10269573
52~60	1.96614330	0.76197360	6~	1.95820716	0.86590597

(2) 10cm直径級別回帰に帰因する平方和など。

第 25 表

直径級	S≩²	Sdyx 1 x 2 ²	Syx ₁ x ₂	R
6~10	1.89552330	0.06511089	0.00162777	0.983255
12~20	6.04670139	0.18032081	0.00191831	0.985415
22~30	1.34602743	0.22244787	0.00249941	0.926378
32~40	1.93226005	0.36564138	0.00217644	0.916995
42~50	1.30383641	0.37008965	0.00189790	0.882559
52~60	1.17129823	0.44119435	0.00225099	0.852285
62~70	0.77459253	0.42505211	0.00274227	0.803545
72~80	0.75690463	0.32516791	0.00218233	0.836358
82~90	0.30778594	0.13930097	0.00199001	0.829714
92~100	0.14052743	0.09131485	0.00222719	0.778546
102~	0.10658070	0.03737970	0.00149519	0.860434
6~	483.65703507	2.80185586	0.00229284	0.997116

- (3) 全径級を一括した場合
 - (1) 分散の一様性の検定

第 26 表

直径級	$Sdyx_{1}x_{2}^{2}$	n	fr = n-3	Syx 1 X 2 2	$\log Syx_1x_2^2$	fr log Syx ₁ x ₂ ²	1/fr
6~10	0.06511089	43	40	0.00162777	-2.788407	-111.536280	0.02500000
12~20	0.18032081	97	94	0.00191831	-2.717081	-255.405614	0.01063829
22~30	0.22244787	92	89	0.00249941	-2.602162	-231.592418	0.01123596
32~40	0.36564138	171	168	0.00217644	-2.662253	-447.258504	0.00595238
42 ~ 50	0.37008965	198	195	0.00189790	-2.721727	-530.736765	0.00512821
52~60	0.44119435	199	196	0.00225099	-2.647627	518.934892	0.00510204
62~70	0.42505211	158	155	0.00274227	-2.561890	-397.092950	0.00645161

第 26 表

26 表	(続)	1	
Sduy, y. 2	-	fr	

直径級	$Sdyx_1 x_2^2$	n	= n - 3	Syx 1 x 2 ²	$\log Syx_1x_2^2$	fr log Syx ₁ x ₂ ²	1/fr
72~80	0.32516791	152	149	0.00218233	-2.661080	- 396.500920	0.00671141
82~90	0.13930097	73	70	0.00199001	-2.701145	- 189.080150	0.01428571
92 ~ 100	0.09131485	44	41	0.00222719	-2.652243	- 108.741963	0.02439024
102~	0.03737970	28	25	0.00149519	-2.825304	- 70.632600	0.04000000
	(q²)		(f)		1	(Efr log Syx1x2 ²)	(Σ1/fr)
	2.66302049	1255	1222			- 3257.513056	0.15489585

S²=0.00217923

 $\log S^2 = -2.661697$

 $\log S^2 f = -3252.593734$

 $\chi^2 = 1/0.43429(-3252.593734+3257.513056) = 11.327231$

補正項

C = 1 + 1/3 (10) [0.15489585-0.00081833] = 1.005136

補正された X²=11.327231/1.005136=11.269352

 $11.269352 < P(\chi^2) 0.05 = 18.307$ d.f, 10

- ゆえに分散は一様である。
- ロ、回帰係数間の差の検定

 $\sum_{i=1}^{1} (Sx_1^2) i = 1.799973991900$ $\sum_{i=1}^{\prime\prime} (Sx_1y) i = 4.581739918633$ $\sum_{i=1}^{1} (Sx_2^2) i = 6.252044705654$ $\sum_{i=1}^{\prime\prime} (Sx_2y) i = 7.578370160053$ $\sum_{i=1}^{n} (Sx_1x_2) i = 1.111615314379$ $\sum_{n=1}^{\prime\prime}$ (Sy²) i = 18.445058525596 $b_1' = 2.01850221$

第27表の1 予備的分散分析表

		1			
変動	り因	自由度	平	方	和
旦	帰	22	15	5.7820	03804
誤	差	1222	2	2.6630	02049
1111	ŀ	1244	18	3.4450	05853

F=0.00337616/0.00217923 d.f 20, 1222 =1.549<F0.05=1.58 有意差なし

b₂'=0.85325241

ハ、回帰平面間の高さの差の検定

 $b_1'' = 1.95820716$

第27表の2 完成した分散分析表

変動因	自由度	平 方 和	平均平方
全回帰	2	15.71451476	
回帰間差	20	0.06752328	0.00337616
回帰計	22	15.78203804	
誤 差	1222	2.66302049	0.00217923
計	1244	18.44505853	

 $S\hat{y}^2 = 483.65703507$ Sy²=486.45889093

Sdyx1x2 2=2.80185586

第28表の1 予備的分散分析表

変動因	自由度	苹	方	和
回帰	2	48	3.657	03507
回帰間差	20	0.06752328		
誤 差	1232	2.73433258		
計	1254.	48	6.458	89093
	ł			

	自由度	平 方 和	
誤 差	1232	2.73433258	÷ •
原因不明	1222	2.66302049	(-
平面間差	10	0.07131209	

第28表の2 完成した分散分析表

			•
変動因	自由度	平 方 和	平均平方
回帰	2 483.65703507		
回帰間差	20	0.06752328	
平面間差	間差 10 0.07131209		0.00713121
原因不明 1222		2.66302049	0.00217923
Ħ	1254	486.45889093	
	'		

F=0.00713121/0.00217923 d.f 10, 1222 =3.27>F0.05=1.83 有意差あり

回帰平面間の高さに有意差が認められるので全径級を一括できない。ゆえに他と大きく異る係数をもつと ころの直径級を、順次除いて同様の方法で検定した結果、22~70cmおよび 72cm以上が一括できることとな つた。

(4) 22~70cmを一括した場合

イ、回帰係数間の差の検定

第29表の1 予備的分散分析表

ı'=1.94062651	変重	り因	自由度	平	方	和
1 -1.94002031						
• 2'=0.82365206	回	帰	10		6.5280	01465
	誤	差	803		1.8244	12536
	H.	ŀ	813	8	3.3524	14001

第29表の1 完成した分散分析表

変動因	自由度	平方和	平均平方	F=0.00222840/0.00227201 d.f	: 0
全回帰	2	6.51018743		=0.9808 < F0.05 = 1.95	υ,
回帰間差	8	0.01782722	0.00222840	念のためこれの逆数を求めると	
回帰計	10	6.52801465		F = 1.02 < F0.05 = 2.93 d.f	80
誤 差	803	1.82442536	0.00227201	有意差なし	
<u></u>	813	8.35244001			

誤 差

原因不明

平面間差

ロ、回帰平面間の高さの差の検定

b ₁ "=1.95790858	Sŷ ² = 77.42300704
b ₂ "=0.82232361	Sy ² = 79.28529020
	$Sdyx_1x_2^2 = 1.86228316$

第30表の1 予備的分散分析表

自由度	平方和
2	77.42300704
8	0.01782722
807	1.84445594
817	79.28529020
	2 8 807

第30表の2 完成した分散分析表

変動因	自由度	平 方 和	平均平方	
回帰	2	77.42300704		F=0.00500765/0.00227201
回帰間差	8	0.01782722		=2.20 <f0.05=2.38< td=""></f0.05=2.38<>
平面間差	4	0.02003058	0.00500765	
原因不明	803	1.82442536	0.00227201	
≣†	817	79.28529020		

(5) 72cm以上を一括した場合

イ、回帰係数間の差の検定

b ₁ ' = 1.89941879
b ₂ ′=0.93986648

第31表の1 予備的分散分析表

自由度 平方和

4 0.02003058

1.84445594

1.82442536

(-

807

803

変	動 因	自由度	平	方	和
回	帰	8		1.311	79870
誤	差	285	(0.593	16343
	計	293		1.9049	96213
誤					

第31表の2 完成した分散分析表

変動因	自由度	平 方 和	平均平方	F = 0.00172807/0.00208128 d.f 6, 5
全回帰	2	1.30143030		=0.830< F 0.05=2.12
回帰間差	6	0.01036840	0.00172807	念のためにこれの逆数を求めると
回帰計	8	1.31179870		F = 1.20 < F0.05 = 3.68 d.f 285
誤 差	285	0.59316343	0.00208128	有意差なし
計	293	1.90496213		

誤 差

原因不明

平面間差

P、回帰平面間の高さの差の検定

b ₁ "=1.74061570	$S^{2} = 4.65917525$
b ₂ "=0.94578054	Sy ² = 5.26985466
	$Sdyx_1x_2^2 = 0.61067941$

第32表の1 予備的分散分析表

変動因		自由度	平	方	和
回帰		2	4.65917525		
回帰間差		6	0.01036840		
誤	差	288	0.60031		31101
計		296		5.269	85466
計		296		5.269	8546

第32表の2 完成した分散分析表

変動因	自由度	平 方 和	平均平方	
回 帰	2	4.65917525		F = 0.002382
回帰間差	6	0.01036840		=1.14 < F0.
平面間差	3	0.00714758	0.00238253	
原因不明	285	0.59316343	0.00208128	
計	296	5.26985466		

(6) 6~20cmを一括した場合

イ、回帰係数間の差の検定

b ₁ '=2.09801204
b ₂ '=0.84653198

第33表の1	予備的分散分析表
3500 AC 0 1	

自由度 平方和

0.60031101

0.59316343

0.00714758

(—

288

285

3

変重	为因	自由度	率	方	和
回	帰	4	2	7.9422	22469
誤	誤 差 134		C	0.2454	3170
計		138	8	8.1876	5639

第33表の2 完成した分散分析表

変動因	自由度	平 方 和	平均平方		
全回帰	2	7.92647546		F=0.00787462/0.00183158	đ
回帰間差	2	0.01574923	0.00787462	=4.30>F0.05=3.06	有
回帰計	4	7.94222469			
誤 差	134	0.24543170	0.00183158		
計	138	8.18765639			

検定の結果を取纒めると次表のようになる。

第	34	表
277	0Ŧ	4 X

	1		 				
直 径	**	Mr.T.Y.9		回帰係数	(間の差	の検定	
範囲	本数	修正X ²	<u>平均された</u> b1	<u>- 回帰係数</u> b ₂	回帰間分散	誤差分散	F
6~	1255	11.2670	2.01850221	0.85325241	0.00337556	0.00217924	1.55
12~	1212		2.02959100	0.85927309	0.00331739	0.00219790	1.51
12~100	1184		2.03295072	0.85533447	0.00342569	0.00221308	1.55
22~100	1087		1.93191733	0.84511074	0.00245510	0.00223914	1.10
22~80	970	<u> </u>	1.94477466	0.83353228	0.00214257	0.00225798	0.948
22~70	818		1.94062651	0.82365206	0.00222840	0.00227201	0.981
72 ~	297		1.89941879	0.93986648	0.00172807	0.00208128	0.830
	,			回帰平面	前間の差	の検定	
			<u>込みにした</u> b1	<u>-回帰係数</u> b ₂	平 面 間 の 差 の 分 散	原因不明	F
			1.95820716	0.86590597	0.00713121	0.00217924	3.27**
			1.95326643	0.86567387	0.00756767	0.00219790	3.44**
			1.96332612	0.85688354	0.00532758	0.00221308	2.41*
			1.96102563	0.84185022	0.00476119	0.00223914	2.13*
			1.97122195	0.82899117	0.00628157	0.00225798	2.78*
			1.95790858	0.82232361	0.00500765	0.00227201	2.20
			1.74061570	0.94578054	0.00238253	0.00208128	1.14

以上の結果より材積式は 6~10cm、12~20cm、22~70cm、72cm 以上の 4 本立となる。今各直径級の回 帰常数を求めると、

6~10cm	a = -2.14762
12~20 cm	a = -2.427780
22 ~ 70cm	a = -2.1415525
72cm~	a = -1.8965098

ゆえに材積式は次のようになる。

直径級	材	積	式
6~10	$\stackrel{\wedge}{\mathbf{Y}}=2.06848\mathbf{X}_{1}$	+0.67053X ₂	-2.14762
12~20	$\stackrel{\wedge}{\mathbf{Y}}=2.119952\mathbf{X}$	1 +0.896909Σ	4 2−2.427780
22~70	$\hat{\mathbf{Y}} = 1.9579086 \mathbf{X}$	X ₁ +0.822323	6 X₂−2. 1415525
72~	$\hat{\mathbf{Y}} = 1.7406157\Sigma$	X ₁ +0.945780	5X ₂ -1.8965098

材 積 調 製 業 務 資 料 第9号

第 7 樹種間の材積式の比較

モミ、ツガ両樹種をこみにした場合、同一の回帰式で材積を推定できることが保証されれば、それだけ計 算の手間を省くことができ、また材積表の数を減らすことが可能となるので、材積表完製に先だつて樹種間 の材積式の比較を行う。この比較は直径級間の場合と同様の方法で行う。

1. 直径級别平方和、積和

(1) モ ミ

直径級	n	Sx 1 ²	Sx 2 ²	Sx 2 x 2	Sx ₁ y	Sx 2 y	Sy ²
6~20	135	3.49378944	2.23095713	2.18946111	8.81457744	6.23935122	23.12223389
22~90	650	12.55774253	6.45197426	7.28000492	31.02715573	20.35508878	80.75368322
92~	174	0.20173447	0.43704776	0.03304502	0.33251547	0.50324108	1.53409809

(2) ツ ガ

直径級	n	Sx 1 ²	Sx 2 2	Sx 1 y 2	Sx ₁ y	Sx ₂ y	Sy ²
6~10	43	0.28170800	0.30579730	0.19925169	0.71631141	0.61719477	1.96063419
12~20	97	0.70882771	0.94450428	0.55256173	1.99827856	2.01853911	6.22702220
22~70	818	13.29223821	7.16664869	6.71484316	31.54676140	19.04035349	79.28529020
72 ~	297	0.81395523	1.22375276	0.33362448	1.73231879	1.73811355	5.26985466

2. 直径級别回帰係数、回帰に帰因する平方和、推定値の分散

(1) モ ミ

直径级	bı	b 2	Sdyx ₁ x ₂ ²	Syx 1 x 2 ²	d.f
6~20	2.00087261	0.83305879	0.28764096	0.00217910	132
22~90	1.85561338	1.06110377	1.58041646	0.00244268	647
92~	1.47797423	1.03970648	0.51942578	0.00303758	171

(2) ツ ガ

直径級	bı	b 2	Sdyx ₁ x ₂ ²	Syx 1 x 2 ²	d.f
6~10	2.06847718	0.67053304	0.06511089	0.00162777	40
12~20	2.11995210	0.89690933	0.18032081	0.00191831	94
22~70	1.95790858	0.82232361	1.86228316	0.00228501	815
72~	1.74061570	0.94578054	0.61067941	0.00207714	294

3. モミ6~20cm、ツガ6~10cm直径級間の比較

(1) 分散の一様性の検定

樹	種	d.f	平方	和	平均平方	F = 0.00217910/0.00162777	d.f 132,40
モ	Ę	132	0.287	64096	0.00217910	= 1.34 < F0.025 = 1.69	有意差なし
ッ	ガ	40	0.065	511089	0.00162777		

第35表の1 予備的分散分析表

(2) 回帰係数間の差の検定

	変重	か因	自由度	平	方	和
b ₁ ' =2.01448597						
b ₂ '=0.80595802	回	帰	4	24	4.730	11623
-	誤	差	172	(0.352	75185
	ili i	ł	176	2	5.082	86808
			7			

第35表の2 完成した分散分析表

変動因	自由度	平方和	平均平方	
全回帰	2	24.72593010		F =
回帰間差	2	0.00418613	0.00209307	
回帰計	4	24.73011623		
誤 差	172	0.35275185	0.00205088	
計	176	25.08286808		

(3) 回帰平面間の高さの差の検定

b ₁ "=2.04478121	$S\hat{y}^2 = 30.49398229$
b ₂ "=0.83391656	$Sy^2 = 30.91044698$
	$Sdyx_{1}x_{2}^{2} = 0.41646469$

第36表の1	予備的分散分析表
	J /mu // 10 // 1/ 10

変動因		自由度	平	方	和	
口	帰.	2	30.49398229			
回帰間差		2	(0.00418613		
誤	差	173	0.41227856			
計		177	30	0.910	44698	

		自由度	平 方 和	
誤	差	173	0.41227856	
原因	不明	172	0.35275185	(-
平面間差		1	0.05952671	

•

第36表の2 完成した分散分析表

変動因	自由度	平方和	平均平方	
回帰	2	30.49398229		F =0.05952671/0.00205088
回帰間差	2	0.00418613		=29.02>F0.05=3.89
平面間差	1	0.05952671	0.05952671	
原因不明	172	0.35275185	0.00205088	
₹ŀ	177	30.91044698		

回帰平面間の高さに差が認められ、回帰係数間には差が認められなかつたが、この場合には別々の回帰式 から材積を推定することとした。

4. モミ6~20cm、ツガ12~20cm直径級間の比較

(1) 分散の一様性の検定

樹	種	自由度	平 方	和	平均平方	F = 0.00217910/0.00191831	d.f 132, 94
モ	Ę	132	0.28	764096	0.00217910	F = 0.0021791070.00191831 $= 1.14 < F0.025 = 1.42$	d.1 132,94 有意差なし
ッ	ガ	94	0.18	032081	0.00191831		

(2) 回帰係数間の差の検定

第37表の1 予備的分散分析表

	変重	为因	自由度	平	方	和
$b_1' = 2.00675600$ $b_2' = 0.86769108$	回	帰	4	28	8.8812	29447
5 ₂ = 0.00707100	誤	差	226	(0.4679	96162
	đ	ł	230	29	9.3492	25609

第37表の2 完成した分散分析表

変動因	自由度	平方和	平均平方	
全回帰	2	28.86406144		F = 0.00861
回帰間差	2	0.01723303	0.00861652	=4.16>F0
回帰計	4	28.88129447		
誤 差	226	0.46796162	0.00207063	
計	230	29.34925609		

回帰係数間に差が認められるので、この直径級の両樹種は一緒にできない。

5. モミ22~90cm、ツガ22~70cm直径級間の比較

(1) 分散の一様性の検定

樹	種	自由度	平	方	和	平均平方	F = 0.00244268/0.00228501	d.f 647, 815
モ	Ę	647		1.5804	41646	0.00244268	= 1.07 < F0.025 = 1.09	有意差なし
ッ	ガ	815		1.8622	28316	0.00228501		•

(2) 回帰係数間の差の検定

第38表の1 予備的分散分析表

	変重	か 因	自由度	平	方	和
$b_1' = 1.92615580$						
b ₂ ′=0.91339517	D	帰	4	15	6.5962	27380
	誤	差	1462		3.4428	69962
	Ē	t	1466	16	0.0389	97342

第38表の2 完成した分散分析表

変動因	自由度	平 方 和	平均平方	
全回帰	2	156.51072010		F =0.04277685/0.00235479
回帰間差	2	0.08555370	0.04277685	=18.17>F0.05=2.99
回帰計	4	156.59627380		
誤 差	1462	3.44269962	0.00235479	
計	1466	160.03897342		

回帰係数間に差が認められるので、この直径級の両樹種は一緒にできない。

6. モミ92cm~、ツガ72cm~直径級間の比較

(1) 分散の一様性の検定

樹	種	自由度	平 方	和	平均平方	F = 0.00303758/0.00207714	d f 171 294
モ	3	171	0.5194	42578	0.00303758	F = 0.0030373070.00207714 = 1.46>F0.025=1.28	有意差あり
ッ	ガ	294	0.6106	67941	0.00207714	· · · · · · ·	

分散が一様でないので、この直径級の両樹種は一緒にできない。

以上のとおり樹種間の比較検定の結果は両樹種は一緒にできず、それぞれモミ、ツガ独自の材積式により 表を作成しなければならないことが判つた。

第 8 材 積 式 の 決 定

本材積式の計算はすべて対数法で計算されたために、これによる誤差が含まれているから、この点を修正 したうえで最終的な材積式が決定されなければならない。

1. 修正係数の計算

修正係数は次式であらわされる。

$$f = 10$$

$$\frac{n-1}{n} \cdot \frac{1}{2} - (\log e \ 10)S^{2}$$

$$f = 10$$

$$\frac{n-1}{n} (1.151293)S^{2}\log y$$

$$= 10$$

ただし

f=修正係数 S²=分散

ゆえに樹種別、直径級別の修正係数は次のとおりである。

第39表の1 モ ミ

直径級	(標準誤差)2	n-1/n	(標準誤差) ² × 1.151293	修正係数
6~20	0.00217910	0.99259259	0.00249020	1.00575
22~90	0.00244268	0.99846154	0.00280791	1.00649
92~	0.00303758	0.99425287	0.00347704	1.00804

第39表の2 ッ ガ

直径級	(標準誤差)2	n-1/n	<u>n−1</u> (標準誤差) ² ×1.151293	修正係数
6~10	0.00162777	0.97674419	0.00183045	1.00422
12~20	0.00191831	0.98969072	0.00218576	1.00505
22~70	0.00228501	0.99877751	0.00262750	1.00607
72~	0.00207714	0.99663300	0.00238335	1.00551

2. 材 積 式 の 決 定

材積式 log V=a+b₁ log d+b₂ log h に修正係数の対数と 1/100 の対数であるところの -2(材積式 の計算の場合、材積については便宜上 100倍してから対数に変換して計算されているので、これをもとにか えすため)を加えたところの log V=a-2+b₁log d+b₂log h+log $\left(\frac{n-1}{n} \times \sigma^2 \times 1.151293\right)$ により、 最終的に材積表の数値算出に用いた材積式は次表のとおりである。

	ž	
材	積	式
$\log V = 5.828139 + 2$.000873 log d+	0.833059 log h
$\log V = 5.7463964 +$	1.8556134 log d	+1.0611038 log h
$\log V = \overline{4.5314110} +$	1.4779742 log d	+1.0397065 log h
	$\log V = 5.7463964 +$	本 $ t $ 材 積 log V=5.828139+2.000873 log d+ log V=5.7463964+1.8556134 log d log V=4.5314110+1.4779742 log d

熊本営林局モミ、ツガ立木材積表調製説明書

	<i>"</i>	ガ	
直径級	材	積	
6~10	$\log V = \overline{5}.85421 + 2.$	06848 log d +0.	.67053 log h
12~20	$\log V = \overline{5}.574406 + 2$.119952 log d+	0.896909 log h
22~70	$\log V = 5.8610750 +$	1.9579086 log d	l+0.8223236 h
72~	$\log V = \bar{4}.1058736 +$	1.7406157 log d	l+0.9457805 log h

ただし

V=幹 材 積 (m²) d=胸高直径 (cm) h=樹 高 (m)

第9 材 積 表 の 適 合 度

材積表の適合度は調製要綱に基き推定材積の誤差率によつてあらわす。材積式の標準誤差は対数によつて 表わされるが、材積表の標準誤差は真数で表わした材積について計算しなければならない。

いま $\log V = X$ $V = 10^x$ とすると、

真数材積の誤差を &v とすれば

 $\log(V+\xi v)=x+\xi$

ゆえに

$$V + \xi v = 10^{x+\epsilon}$$

$$\xi v = 10^{x+\epsilon} - V$$

$$= 10^{x+\epsilon} - 10^{x}$$

$$= 10^{x} (10^{\epsilon} - 1)$$

対数による標準誤差を S で差わせば材積表の百分率標準誤差 Sv(%) は

 $Sv(\%) = 10^{x} (10^{S} - 1) \times 100/10^{x}$

$$=100(10^{S}-1)$$

10^S を展開すれば

$$10^{S} = 10^{\circ} + \frac{S}{1 \times} 10^{\circ} \log e \ 10 + \dots$$

$$Sv(\%) = (1 + S.2.3026 - 1)100$$
$$= 230.26(S)$$

すなわち対数式の標準誤差を230.26倍すれば百分率標準誤差が得られる。しかるにこれは単木の誤差率で あるから、上式を本数の平方根で除して材積表の誤差率を求める。計算の結果は次表のとおりである。

直径級	本	数	百分率標準誤差	95%信頼度 標準誤差
6~20		135	% 0.925	% 1.83
22~90		650	0.444	0.87
92~		174	0.965	1,90

[モ ミ

∥ ツ ガ

直径級	本数	 百分率標準誤差	95 % 信 頼 度 標 準 誤 差
6~10	43	% 1.415	% 2.86
12~20	97	1.024	2.03
22~70	818	0.384	0.75
72~	297	0.609	1.20

第 10 材積表使用上の注意

- 1、本材積表は熊本営林局管内全域のミモ、ツガに適用するものである。
- 2、本材積表は毎木の胸高直径(地上1.2m)、樹高を測定して幹材積を求めるものである。
- 3、本表の幹材積は第8、この材積式により直接計算したものである。したがつて本表掲記以外の胸高直 径、樹高を有するものの材積はこの材積式により求めること。
- 4、直径級別材積式で材積を計算した結果、直径階の境で推定値が前後と不均衡になつた値は三点平均法に より修正した。

第 11 結 言

本材積表は熊本営林局管内全域に分布するモミ、ツガを対象として推測統計法を利用し、調製要綱に基い て調製したものである。

モミ、ツガは殆んど高令天然生林に現出し、したがつて小径木は全般的に被圧された状態にあるため樹型 が不整形であり、また高令大径木になると不整形化の傾向があるので分散が大きくなり小数資料に対しては 誤差が稍大となるが、しかし利用の主体をなす径級については充分に適合するものと思われる。

なお材積調査において実測者の樹高測定の精否が材積推定上の誤差に大きく影響すると思われるので、樹 高測定には特に慎重を要する。

- 1、資料は対象全域から收集したモミ 959本、ツガ 1.255 本を用い、材積式は V=10^a D^{b1}H^{b2} を使用した。
- 2、樹種別に直径級間の有意差を検定した結果、全資料を一括した推定式を用いることが不可能で、モミ

37、ツガ4つの直径範囲毎の推定式に分れた。

3、モミ、ツガ間の比較検定により、両樹種は合併して同一推定式を用いることが不可能であることが判り、それぞれ独自の推定式を用いた。

材 積 調 製 業 務 資 料 第9号

第 12 モ ミ

Dcm]							<u></u>	
Hm	6	8	10	12	14	16	18	20	22
3 4 5 6 7	0.0061 0.0077 0.0093 0.011 0.012	0.014 0.016 0.019 0.022	0.026 0.030 0.034	0.037 0.043 0.049	0.059 0.067	0.077 0.087	0.111	0.128	
8 9 10 11 12	0.014 0.015 0.017 0.018 0.019	0.024 0.027 0.029 0.032 0.034	0.038 0.042 0.046 0.050 0.053	0.055 0.061 0.066 0.072 0.077	0.075 0.082 0.090 0.097 0.105	0.098 0.108 0.118 0.127 0.137	0.124 0.136 0.149 0.161 0.173	0.145 0.161 0.177 0.193 0.209	0.1 0.1 0.2 0.2 0.2
13 14 15 16 17		0.037 0.039	0.057 0.061 0.064 0.068	0.082 0.088 0.093 0.098 0.013	0.112 0.119 0.126 0.133 0.140	0.146 0.156 0.165 0.174 0.183	0.185 0.197 0.209 0.220 0.232	0.226 0.241 0.258 0.273 0.289	0.2 0.2 0.3 0.3 0.3
18 19 20 21 22				0.108	0.147 0.154 0.160	0.192 0.201 0.210 0.218 0.227	0.243 0.254 0.265 0.276 0.287	0.305 0.320 0.336 0.351 0.367	0.3 0.3 0.4 0.4
23 24 25 26 27							0.298	0.382 0.398	0.4 0.4 0.5
28 29 30 31 32									
33 34 35 36 37									

熊本営林局モミ、ツガ立木材積表調製説明書

材 積 表

.

24	26	28	30	32	34	36	38	40	42
						·			
0.184 0.209 0.234 0.259 0.284	0.242 0.271 0.300 0.329	0.278 0.311 0.344 0.377	0.354 0.391 0.429	0.399 0.441 0.484	0.493 0.541	0.549 0.602	0.665	0.732	
0.309 0.334 0.359 0.385 0.410	0.358 0.387 0.417 0.446 0.476	0.411 0.445 0.478 0.512 0.546	0.467 0.505 0.544 0.582 0.621	0.526 0.570 0.613 0.656 0.700	0.589 0.637 0.686 0.734 0.783	0.655 0.709 0.763 0.817 0.871	0.724 0.783 0.843 0.903 0.963	0.797 0.862 0.927 0.993 1.059	0.872 0.943 1.015 1.087 1.159
0.436 0.462 0.488 0.514 0.539	0.506 0.536 0.566 0.596 0.626	0.580 0.615 0.649 0.684 0.718	0.660 0.699 0.738 0.777 0.816	0.744 0.788 0.832 0.876 0.920	0.832 0.881 0.931 0.980 1.030	0.925 0.980 1.035 1.090 1.145	1.023 1.083 1.144 1.205 1.266	1.125 1.191 1.258 1.325 1.392	1.232 1.304 1.377 1.451 1.524
0.566 0.592 0.618 0.644	0.656 0.686 0.717 0.747 0.778	0.753 0.788 0.822 0.857 0.892	0.856 0.895 0.935 0.975 1.014	0.965 1.009 1.054 1.099 1.143	1.079 1.129 1.179 1.229 1.280	1.200 1.256 1.311 1.367 1.423	1.327 1.388 1.450 1.511 1.572	1.459 1.527 1.594 1.662 1.730	1.598 1.671 1.745 1.820 1.894
		0.928	1.054 1.094	1.188 1.233 1.279	1.330 1.380 1.431 1.482	1.479 1.535 1.591 1.647 1.704	1.635 1.697 1.759 1.821 1.884	1.798 1.866 1.935 2.003 2.072	1.968 2.043 2.118 2.193 2.268
							1.946	2.140 2.209	2.343 2.419 2.494

69

 \dot{a}

材積調製業務資料 第9号

Dcm Hm	44	46	48	50	52	54	56	58	60
13 14 15 16 17	0.951 1.028 1.107 1.185 1.264	1.117 1.202 1.287 1.372	1.209 1.300 1.393 1.485	1.403 1.502 1.602	1.509 1.616 1.723	1.618 1.733 1.848	1.854 1.977	1.978 2.110	2.107 2.247
18 19 20 21 22	1.343 1.422 1.502 1.581 1.661	1.458 1.544 1.631 1.717 1.804	1.578 1.671 1.765 1.858 1.952	1.702 1.803 1.904 2.005 2.106	1.831 1.939 2.047 2.156 2.265	1.963 2.079 2.196 2.312 2.429	2.101 2.225 2.349 2.474 2.599	2.242 2.374 2.507 2.640 2.774	2.387 2.528 2.670 2.812 2.954
23 24 25 26 27	1.742 1.822 1.903 1.984 2.065	1.891 1.979 2.066 2.154 2.242	2.047 2.141 2.236 2.331 2.426	2.208 2.310 2.412 2.515 2.617	2.374 2.484 2.594 2.704 2.815	2.547 2.664 2.782 2.901 3.019	2.725 2.850 2.977 3.103 3.230	2.908 3.042 3.177 3.312 3.447	3.097 3.240 3.383 3.527 3.671
28 29 30 31 32	2.146 2.227 2.309 2.391 2.472	2.330 2.419 2.507 2.596 2.685	2.522 2.618 2.713 2.809 2.906	2.720 2.823 2.927 3.031 3.134	2.926 3.037 3.148 3.259 3.371	3.138 3.257 3.376 3.496 3.616	3.357 3.484 3.612 3.740 3.868	3.583 3.719 3.855 3.991 4.128	3.815 3.960 4.105 4.251 4.396
33 34 35 36 37	2.555 2.637 2.719	2.774 2.863 2.953 3.043	3.002 3.099 3.196 3.293	3.238 3.343 3.447 3.552 3.656	3.483 3.595 3.707 3.820 3.932	3.736 3.856 3.976 4.097 4.218	3.996 4.125 4.254 4.383 4.512	4.265 4.402 4.540 4.678 4.816	4.542 4.688 4.835 4.981 5.128
38 39 40 41 42							4.642	4.954	5.276
43 44 45									

-

62	64	66	68	70	72	74	76	78	80
2.388	2.533	2.682	2.834						
2.537 2.687 2.837 2.988 3.139	2.691 2.850 3.010 3.169 3.330	2.849 3.018 3.186 3.356 3.525	3.012 3.189 3.368 3.547 3.726	3.178 3.366 3.554 3.743 3.932	3.349 3.546 3.745 3.944 4.143	3.523 3.731 3.940 4.149 4.359	3.702 3.921 4.140 4.360 4.580	4.114 4.344 4.575 4.807	4.312 4.553 4.795 5.038
3.291 3.443 3.595 3.748 3.901	3.491 3.652 3.814 3.976 4.138	3.696 3.866 4.038 4.209 4.381	3.906 4.087 4.268 4.449 .4.631	4.122 4.313 4.503 4.695 4.887	4.343 4.544 4.745 4.947 5.149	4.570 4.781 4.993 5.205 5.417	4.802 5.024 5.246 5.469 5.692	5.039 5.272 5.505 5.739 5.973	5.281 5.525 5.770 6.015 6.261
4.055 4.209 4.363 4.517 4.672	4.301 4.464 4.628 4.791 4.956	4.554 4.726 4.899 5.073 5.247	4.813 4.996 5.178 5.362 5.546	5.079 5.272 5.465 5.658 5.852	5.351 5.554 5.758 5.962 6.166	5.631 5.844 6.058 6.273 6.488	5.916 6.141 6.366 6.591 6.817	6.208 6.444 6.680 6.916 7.153	6.507 6.754 7.001 7.249 7.497
4.827 4.982 5.138 5.294 5.450	5.120 5.285 5.450 5.615 5.781	5.421 5.595 5.770 5.945 6.121	5.730 5.914 6.099 6.284 6.469	6.046 6.241 6.436 6.631 6.827	6.371 6.576 6.781 6.987 7.193	6.703 6.919 7.135 7.351 7.568	7.043 7.270 7.497 7.724 7.952	7.391 7.629 7.867 8.106 8.345	7.746 7.996 8.245 8.496 8.746
5.607 5.763 5.920	5.947 6.113 6.279	6.296 6.472 6.648	6.655 6.841 7.027	7.023 7.219 7.415 7.612	7.399 7.606 7.813 8.021	7.785 8.003 8.221 8.439	8.180 8.409 8.638 8.867	8.584 8.824 9.065 9.305 9.546	8.997 9.249 9.501 9.753 10.005

Dcm			i						
Hm	82	84	86	88	90	92	94	96	98
19 20 21 22 23	4.514 4.767 5.020 5.274 5.529	4.721 4.985 5.250 5.515 5.782	5.207 5.484 5.761 6.040	5.434 5.723 6.012 6.303	5.739 6.042 6.345 6.649	6.032 6.348 6.665 6.982	6.314 6.643 6.972 7.302	6.514 6.853 7.193 7.533	6.716 7.065 7.415 7.766
24 25 26 27 28	5.784 6.040 6.297 6.554 6.812	6.049 6.316 6.585 6.854 7.124	6.319 6.598 6.879 7.160 7.442	6.594 6.886 7.179 7.472 7.766	6.954 7.260 7.566 7.873 8.181	7.300 7.619 7.938 8.258 8.578	7.632 7.963 8.295 8.627 8.959	7.874 8.215 8.557 8.899 9.242	8.117 8.469 8.822 9.175 9.528
29 30 31 32 33	7.071 7.329 7.589 7.849 8.110	7.394 7.665 7.936 8.208 8.480	7.724 8.007 8.290 8.574 8.859	8.060 8.356 8.652 8.948 9.245	8.488 8.797 9.107 9.416 9.727	8.899 9.220 9.542 9.864 10.188	9.292 9.625 9.959 10.293 10.628	9.586 9.930 10.274 10.619 10.964	9.882 10.237 10.592 10.947 11.303
34 34 36 37 38	8.371 8.632 8.894 9.156 9.419	8.753 9.027 9.301 9.575 9.850	9.144 9.430 9.716 10.002 10.289	9.543 9.841 10.139 10.438 10.738	10.037 10.349 10.660 10.972 11.285	10.511 10.834 11.158 11.483 11.808	10.963 11.298 11.634 11.971 12.307	11.310 11.656 12.002 12.349 12.696	11.660 12.016 12.373 12.731 13.089
39 40 41 42 43	9.682 9.946 10.210 10.474	10.125 10.401 10.677 10.953	10.577 10.865 11.153 11.442 11.732	11.083 11.339 11.640 11.941 12.243	11.598 11.912 12.226 12.540 12.855	12.133 12.459 12.785 13.112 13.439	12.644 12.981 13.319 13.657 13.995	13.044 13.391 13.740 14.088 14.437	13.447 13.806 14.165 14.524 14.884
44 45							14.333	14.786	15.244

100	102	104	106	108	110	112	114	116	118
6.919	7.125	7.332	7.541	7.753	7.966	8.181	8.398	8.616	8.837
7.279	7.495	7.714	7.934	8.156	8.380	8.606	8.835	9.065	9.296
7.640	7.867	8.096	8.327	8.560	8.796	9.033	9.272	9.514	9.757
8.001	8.239	8.479	8.721	8.965	9.212	9.460	9.711	9.964	10.219
8.363	8.612	8.862	9.115	9.371	9.628	9.888	10.150	10.415	10.681
8.726	8.985	9.247	9.511	9.777	10.046	10.317	10.590	10.866	11.144
9.089	9.359	9.631	9.906	10.184	10.464	10.746	11.031	11.318	11.608
9.453	9.733	10.017	10.303	10.591	10.883	11.176	11.473	11.771	12.073
9.817	10.109	10.403	10.700	11.000	11.302	11.607	11.915	12.225	12.538
10.182	10.484	10.789	11.098	11.408	11.722	12.038	12.357	12.679	13.004
10.547	10.860	11.177	11.496	11.818	12.143	12.470	12.801	13.134	13.470
10.913	11.237	11.564	11.894	12.227	12.564	12.903	13.245	13.590	13.937
11.279	11.614	11.952	12.293	12.638	12.985	13.336	13.689	14.046	14.405
11.646	11.992	12.341	12.693	13.049	13.407	13.769	14.134	14.502	14.873
12.013	12.370	12.730	13.093	13.460	13.830	14.203	14.580	14.959	15.342
12.380	12.748	13.119	13.494	13.872	14.253	14.638	15.026	15.417	15.812
12.748	13.127	13.509	13.895	14.284	14.677	15.073	15.473	15.875	16.282
13.117	13.506	13.900	14.297	14.697	15.101	15.509	15.920	16.334	16.752
13.486	13.886	14.290	14.698	15.110	15.526	15.945	16.367	16.793	17.223
13.855	14.266	14.682	15.101	15.524	15.951	16.381	16.815	17.253	17.695
14.224	14.647	15.073	15.504	15.938	16.376	16.818	17.264	17.713	18.167
14.594	15.028	15.465	15.907	16.352	16.802	17.255	17.713	18.174	18.639
14.965	15.409	15.858	16.310	16.767	17.228	17.693	18.162	18.635	19.112
15.335	15.791	16.250	16.714	17.183	17.655	18.131	18.612	19.097	19.585
15.706 16.077	16.173 16.555	16.643 17.037	17.119 17.523	, 17.598 18.014	18.082 18.509	18.570 19.009	19.062 19.513	19.558 20.021	20.059 20.533

材積調製業務資料 第9号

Dcm	120	122	124	126	128	130
Hm	120	122	124	120	120	130
20 21 22 23 24	9.059 9.530 10.003 10.476 10.950	9.283 9.766 10.250 10.735 11.220	9.509 10.004 10.499 10.996 11.493	9.736 10.243 10.751 11.259 11.768	9.966 10.484 11.004 11.524 12.046	10.197 10.727 11.259 11.791 12.325
25 26 27 28 29	11.424 11.900 12.376 12.853 13.331	11.707 12.194 12.682 13.171 13.660	11.992 12.491 12.991 13.491 13.993	12.279 12.790 13.302 13.814 14.327	12.568 13.091 13.615 14.139 14.665	12.859 13.394 13.930 14.467 15.005
30 31 32 33 34	13.809 14.288 14.767 15.247 15.728	14.150 14.641 15.133 15.624 16.117	14.495 14.997 15.501 16.005 16.509	14.841 15.356 15.872 16.388 16.904	15.191 15.718 16.245 16.773 17.302	15.543 16.082 16.622 17.162 17.703
35 36 37 38 38 38	16.209 16.691 17.173 17.656 18.140	16.610 17.104 17.598 18.093 18.588	17.014 17.520 18.026 18.533 19.040	17.421 17.939 18.458 18.976 19.496	17.832 18.362 18.892 19.423 19.955	18.245 18.787 19.330 19.874 20.418
40 41 42 43 44	18.623 19.108 19.593 20.078 20.563	19.084 19.580 20.077 20.574 21.072	19.548 20.057 20.565 21.075 21.585	20.016 20.536 21.058 21.579 22.101	20.487 21.020 21.553 22.087 22.622	20.962 21.507 22.053 22.599 23.146
45	21.050	21.570	22.095	22.624	23.156	23.69

第 13 ツ ガ 材 積 表

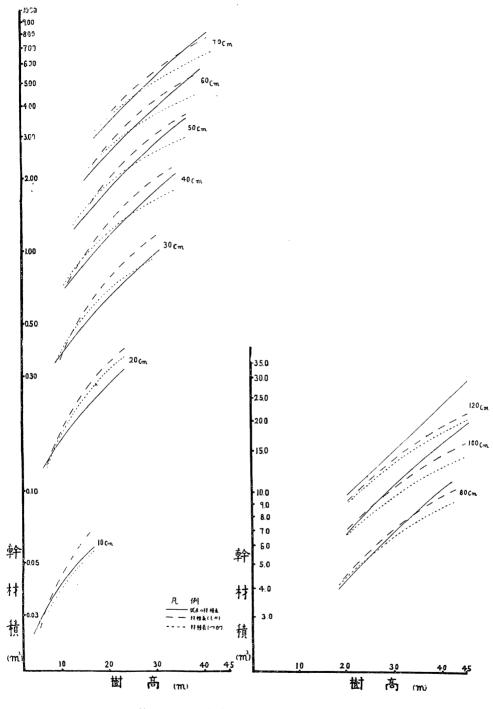
Dcm			10	12	14	16	18	20
Hm	6	8	10	12	14	10	10	20
3 4 5 6 7	0.0061 0.0074 0.0086 0.0097 0.011	0.013 0.016 0.018 0.019	0.021 0.025 0.028 0.031	0.031 0.036 0.042	0.043 0.050 0.058	0.067 0.077	0.086 0.099	0.125
8 9 10 11 12	0.012 0.013 0.014 0.015 0.016	0.021 0.023 0.025 0.026 0.028	0.034 0.037 0.039 0.042 0.044	0.047 0.052 0.057 0.063 0.068	0.065 0.072 0.080 0.087 0.094	0.087 0.096 0.106 0.115 0.124	0.111 0.123 0.136 0.148 0.160	0.140 0.155 0.170 0.185 0.199
13 14 15 16 17		0.029 0.031 0.032	0.047 0.049 0.051 0.054 0.056	0.073 0.078 0.083 0.088 0.092	0.101 0.108 0.115 0.121 0.128	0.134 0.143 0.152 0.161 0.170	0.172 0.183 0.195 0.207 0.218	0.214 0.227 0.242 0.256 0.269
18 19 20 21 22				0.097 0.102	0.135 0.142 0.148 0.155	0.179 0.188 0.197 0.206 0.214	0.230 0.241 0.253 0.264 0.275	0.283 0.297 0.310 0.324 0.337
23 24 25 26 27							0.286	0.350 0.363
28 29 30 31 32								
33 34 35 36 37								

-

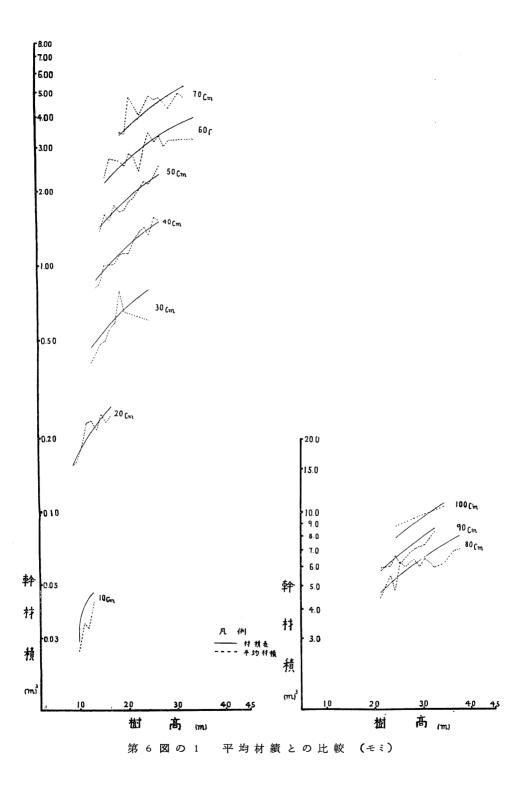
Dcm Hm	24	26	28	30	32	34	36	38	40
8 9 10 11 12	0.202 0.223 0.243 0.263 0.282	0.237 0.261 0.284 0.307 0.330	0.301 0.329 0.356 0.382	0.345 0.376 0.407 0.437	0.427 0.462 0.496	0.481 0.520 0.558	0.581 0.625	0.646 0.694	0.715 0.768
13 14 15 16 17	0.302 0.321 0.339 0.358 0.376	0.353 0.375 0.397 0.418 0.440	0.408 0.433 0.459 0.484 0.509	0.467 0.496 0.525 0.554 0.582	0.530 0.563 0.596 0.628 0.660	0.596 0.634 0.671 0.708 0.744	0.667 0.709 0.750 0.791 0.832	0.742 0.788 0.834 0.880 0.925	0.820 0.871 0.922 0.973 1.022
18 19 20 21 22	0.394 0.412 0.430 0.447 0.465	0.461 0.482 0.503 0.523 0.544	0.533 0.557 0.581 0.605 0.629	0.610 0.638 0.665 0.693 0.720	0.692 0.724 0.755 0.786 0.816	0.779 0.815 0.850 0.885 0.919	0.872 0.911 0.951 0.990 1.028	0.969 1.013 1.057 1.100 1.143	1.072 1.120 1.169 1.216 1.264
23 24 25 26 27	0.482 0.499 0.516 0.533	0.564 0.584 0.604 0.624 0.643	0.652 0.675 0.698 0.721 0.744	0.746 0.773 0.799 0.825 0.852	0.847 0.877 0.907 0.937 0.966	0.954 0.988 1.021 1.055 1.088	1.066 1.104 1.142 1.180 1.217	1.186 1.228 1.270 1.311 1.353	1.311 1.358 1.404 1.450 1.496
28 29 30 31 32			0.766	0.877 0.903	0.996 1.025 1.054	1.121 1.154 1.186 1.219	1.254 1.290 1.327 1.363 1.399	1.394 1.435 1.475 1.515 1.555	1.541 1.586 1.631 1.675 1.720
33 34 35 36 37								1.595	1.764 1.808
38 39 40 41 42									

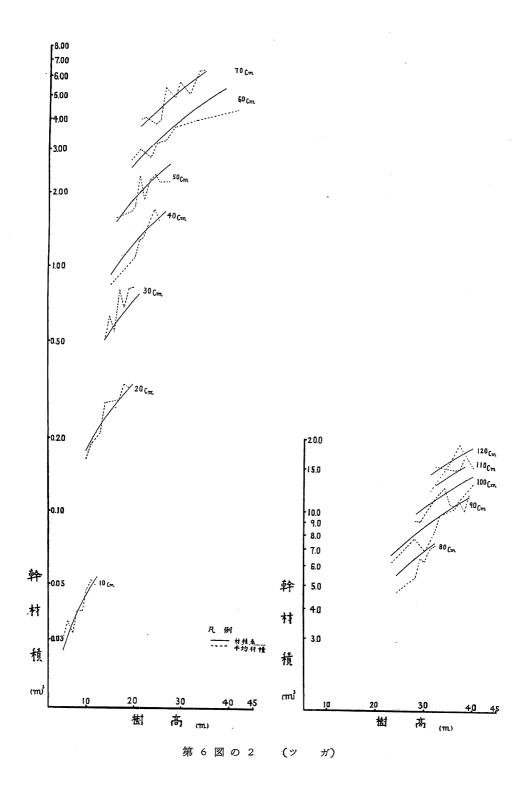
42	44	46	48	50	52	54	56	58	60
0.845	0.925	1.009							
0.902 0.959 1.015 1.070 1.125	0.988 1.050 1.112 1.172 1.232	1.078 1.146 1.213 1.279 1.344	1.172 1.245 1.318 1.390 1.461	1.269 1.349 1.428 1.505 1.582	1.370 1.457 1.542 1.626 1.709	1.568 1.660 1.750 1.840	1.684 1.782 1.880 1.976	1.804 1.909 2.013 2.116	2.040 2.151 2.261
1.179 1.233 1.286 1.338 1.390	1.291 1.350 1.408 1.466 1.523	1.409 1.473 1.536 1.599 1.662	1.531 1.601 1.670 1.738 1.806	1.659 1.734 1.809 1.883 1.956	1.791 1.872 1.953 2.033 2.112	1.928 2.016 2.103 2.189 2.274	2.071 2.165 2.258 2.350 2.442	2.218 2.319 2.419 2.518 2.616	2.370 2.478 2.585 2.690 2.795
1.442 1.494 1.545 1.595 1.645	1.580 1.636 1.692 1.747 1.802	1.723 1.785 1.846 1.906 1.966	1.873 1.940 2.006 2.072 2.137	2.029 2.101 2.173 2.244 2.315	2.191 2.269 2.346 2.423 2.500	2.359 2.443 2.526 2.609 2.691	2.533 2.623 2.713 2.802 2.890	2.713 2.810 2.906 3.001 3.096	2.899 3.003 3.105 3.207 3.308
1.695 1.745 1.794 1.843 1.892	1.857 1.911 1.966 2.019 2.073	2.026 2.085 2.144 2.203 2.261	2.202 2.267 2.331 2.394 2.458	2.385 2.455 2.524 2.593 2.662	2.576 2.651 2.726 2.800 2.875	2.773 2.854 2.935 3.015 3.095	2.978 3.065 3.152 3.238 3.323	3.190 3.283 3.376 3.468 3.560	3.409 3.508 3.607 3.706 3.804
1.941 1.989	2.126 2.179 2.231	2.319 2.377 2.434	2.521 2.583 2.646 2.708	2.730 2.798 2.866 2.933	2.948 3.022 3.094 3.167 3.239	3.174 3.253 3.332 3.410 3.487	3.409 3.493 3.578 3.661 3.745	3.651 3.742 3.832 3.922 4.011	3.902 3.999 4.095 4.191 4.286
							3.828	4.100	4.382 4.476

材積調製業務資料 第9号


Dcm	62	64	66	69	70	70	74		
Hm	02	64	00	68	70	72	74	76	78
15 16 17 18 19	2.175 2.294 2.411 2.527 2.642	2.315 2.441 2.566 2.689 2.812	2.459 2.593 2.725 2.856 2.986	2.749 2.889 3.028 3.166	2.887 3.043 3.197 3.350	3.021 3.192 3.361 3.530	3.150 3.336 3.521 3.706	3.494 3.689 3.882	3.656 3.859 4.062
20 21 22 23 24	2.756 2.869 2.981 3.092 3.202	2.933 3.053 3.172 3.290 3.407	3.115 3.242 3.369 3.494 3.619	3.302 3.438 3.572 3.705 3.837	3.502 3.653 3.804 3.953 4.102	3.698 3.865 4.032 4.198 4.363	3.890 4.074 4.257 4.440 4.622	4.075 4.268 4.459 4.651 4.842	4.264 4.465 4.666 4.866 5.066
25 26 27 28 29	3.311 3.420 3.527 3.635 3.741	3.523 3.639 3.754 3.868 3.981	3.742 3.865 3.987 4.108 4.228	3.968 4.098 4.227 4.355 4.483	4.249 4.396 4.542 4.688 4.833	4.528 4.692 4.856 5.019 5.181	4.804 4.986 5.167 5.348 5.528	5.033 5.223 5.413 5.602 5.791	5.265 5.464 5.663 5.861 6.059
30 31 32 33 34	3.847 3.952 4.056 4.160 4.264	4.093 4.205 4.316 4.427 4.537	4.348 4.466 4.585 4.702 4.819	4.609 4.735 4.860 4.985 5.109	4.977 5.120 5.263 5.406 5.548	5.343 5.505 5.666 5.826 5.987	5.708 5.888 6.068 6.247 6.426	5.980 6.168 6.356 6.544 6.731	6.256 6.453 6.650 6.846 7.042
35 36 37 38 39	4.367 4.469 4.571 4.672 4.773	4.647 4.755 4.864 4.972 5.079	4.935 5.051 5.166 5.280 5.394	5.232 5.355 5.477 5.598 5.719	5.689 5.830 5.970 6.110 6.249	6.146 6.306 6.465 6.623 6.781	6.604 6.783 6.961 7.139 7.316	6.919 7.105 7.292 7.478 7.664	7.238 7.434 7.629 7.824 8.018
40 41 42 43 44			5.508	5.839	6.388	6.940 7.097	7.494 7.671	7.850 8.035	8.213 8.407
45									

80	82	84	86	88	90	92	94	96	98
3.821 4.033 4.245	3.989 4.210 4.431	4.391 4.621	4.574 4.814	4.761 5.011	4.951 5.211	5.414	5•620	5.830	6.043
4.456	4.651	4.851	5.053	5.260	5.470	5.683	5.900	6.120	6.343
4.666	4.871	5.080	5.292	5.508	5.728	5.951	6.178	6.409	6.643
4.876	5.090	5.308	5.530	5.756	5.985	6.219	6.456	6.697	6.942
5.085	5.309	5.536	5.768	6.003	6.242	6.486	6.733	6.985	7.240
5.294	5.527	5.763	6.004	6.250	6.499	6.752	7.010	7.271	7.537
5.503	5.744	5.990	6.241	6.496	6°755	7.018	7.286	7.558	7.834
5.711	5.961	6.217	6.477	6.741	7.010	7.283	7.561	7.843	8.130
5.918	6.178	6.443	6.712	6.986	7.265	7.548	7.836	8.128	8.425
6.125	6.394	6.668	6.947	7.230	7.519	7.812	8.110	8.413	8.720
6.332	6.610	6.893	7.181	7.474	7.773	8.076	8.384	8.697	9.014
6.538	6.825	7.118	7.415	7.718	8.026	8.339	8.657	8.980	9.308
6.744	7.040	7.342	7.649	7.961	8.279	8.602	8.930	9.263	9.601
6.950	7.255	7.566	7.882	8.204	8.531	8.864	9.202	9.545	9.894
7.155	7.469	7.789	8.115	8.446	8.783	9.125	9.474	9.827	10.186
7.360	7.683	8.012	8.347	8.688	9.034	9.387	9.745	10.109	10.478
7.564	7.897	8.235	8.579	8.929	9.286	9.648	10.016	10.390	10.769
7.769	8.110	8.457	8.811	9.170	9.536	9.908	10.286	10.670	11.060
7.973	8.323	8.679	9.042	9.411	9.787	10.168	10.556	10.950	11.350
8.176	8.535	8.901	9.273	9.652	10.037	10.428	10.826	11.230	11.640
8.380	8.748	9.122	9.504	9.892	10.286	10.687	11.095	11.509	11.930
8.583 8.785 8.988	8.960 9.171 9.383	9.343 9.564 9.785	9.734 9.964 10.194	10.131 10.371 10.610	10.536 10.784 11.033 11.281	10.946 11.205 11.463 11.721	11.364 11.632 11.901 12.168	11.788 12.067 12.345 12.623	12.219 12.508 12.796 13.084


材 積 調 製 業 務 資 料 第9号


- Devel									
Dcm Hm	100	102	104	106	108	110	112	114	116
20	6.570	6.801	7.035	7.272	7.512	7.756	8.003	8.254	8.507
21	6.881	7.122	7.367	7.615	7.867	8.122	8.381	8.643	8.909
22	7.190	7.442	7.698	7.958	8.221	8.488	8.758	9.032	9.310
23	7.499	7.762	8.029	8.299	8.574	8.852	9.134	9.420	9.710
24	7.807	8.081	8.359	8.640	8.926	9.216	9.509	9.807	10.108
25	8.114	8.399	8.688	8.980	9.277	9.579	9.884	10.193	10.506
26	8.421	8.716	9.016	9.320	9.628	9.940	10.257	10.578	10.903
27	8.727	9.033	9.343	9.658	9.978	10.302	10.630	10.963	11.299
28	9.032	9.349	9.670	9.996	10.327	10.662	11.002	11.346	11.695
29	9.337	9.665	9.997	10.334	10.676	11.022	11.373	11.729	12.090
30	9.641	9.979	10.323	10.671	11.023	11.381	11.744	12.111	12.483
31	9.945	10.294	10.648	11.007	11.371	11.740	12.114	12.493	12.877
32	10.248	10.608	10.972	11.342	11.717	12.097	12.483	12.873	13.269
33	10.551	10.921	11.296	11.677	12.063	12.455	12.852	13.254	13.661
34	10.853	11.234	11.620	12.011	12.409	12.811	13.220	13.633	14.052
35	11.155	11.546	11.943	12.345	12.754	13.167	13.587	14.012	14.443
36	11.456	11.858	12.265	12.679	13.098	13.523	13.954	14.390	14.833
37	11.757	12.169	12.587	13.012	13.442	13.878	14.320	14.768	15.222
38	12.057	12.480	12.909	13.344	13.785	14.233	14.686	15.145	15.611
39	12.357	12.790	13.230	13.676	14.128	14.587	15.051	15.522	15.999
40	12.656	13.100	13.550	14.007	14.470	14.940	15.416	15.898	16.387
41	12.955	13.410	13.871	14.338	14.812	15.293	15.780	16.274	16.774
42	13.254	13.719	14.190	14.669	15.154	15.646	16.144	16.649	17.161
43	13.552	14.027	14.510	14.999	15.495	15.998	16.507	17.024	17.547
44	13.850	14.336	14.829	15.328	15.835	16.349	16.870	17.398	17.933
45						16.701	17.233	17.772	18.318
<u>.</u>									

118	120	122	124	126	128	130
8.764	9.024	9.288	9.554	9.824	10.097	10.374
9.178	9.451	9.726	10.006	10.288	10.574	10.863
9.591	9.876	10.164	10.456	10.751	11.050	11.352
10.003	10.300	10.600	10.905	11.213	11.524	11.839
10.414	10.723	11.036	11.353	11.673	11.998	12.326
10.824	11.145	11.470	11.799	12.133	12.470	12.811
11.233	11.566	11.904	12.245	12.591	12.941	13.295
11.641	11.986	12.336	12.690	13.049	13.411	13.778
12.048	12.406	12.768	13.134	13.505	13.881	14.260
12.455	12.824	13.199	13.578	13.961	14.349	14.742
12.860	13.242	13.629	14.020	14.416	14.817	15.222
13.266	13.659	14.058	14.462	14.870	15.283	15.701
13.670	14.076	14.487	14.902	15.323	15.749	16.180
14.074	14.491	14.914	15.343	15.776	16.214	16.658
14.477	14.906	15.341	15.782	16.228	16.679	17.135
14.879	15.321	15.768	16.221	16.679	17.142	17.611
15.281	15.734	16.194	16.659	17.129	17.605	18.087
15.682	16.147	16.619	17.096	17.579	18.067	18.561
16.082	16.560	17.043	17.533	18.028	18.529	19.036
16.482	16.972	17.467	17.969	18.476	18.990	19.509
16.882	17.383	17.890	18.404	18.924	19.450	19.982
17.281	17.794	18.313	18.839	19.371	19.909	20.454
17.679	18.204	18.735	19.273	19.818	20.368	20.925
18.077	18.614	19.157	19.707	20.263	20.827	21.396
18.474	19.023	19.578	20.140	20.709	21.284	21.867
18.871	19.431	19.999	20.573	21.154	21.742	22.336

第5図 従来の材積表との比較

84

第 14 調 製 年 月 日 お よ び 調 製 担 当 者 官 氏 名

1、 調製年月日

昭和32年12月

2、調製担当者官氏名

計画課	長 農林技官	大	塚	武	行
前計画課	長同	子	幡	弘	之
元計画課	長同	森	田		進
主	査同	小	щ	健	Ξ
係	員同	市	田	政	瑠
11	同	浦	田	恒	彦
17	常勤作業員	坂	本	行	絾
11	常用作業員	西	野	飯	子
林試熊本支導	愚 農林技官	本	田	健二	郎
17	同	岩	元	守	男

ただし、農林技官本田健二郎は昭和26年4月りよ同29年12月まで、岩元守男は同28年4月より同29年12月 まで、浦田恒彦は同30年4月より同10月までそれぞれ資料収集に従事し、西野敏子は同30年6月より同31年 12月まで内業に従事した。

材積調製業務資料 第9号

附録現行材積表の適合度の検定

現在当局で使用中のモミ、ツガ材積表について、回帰式による適合度の検定を行つた結果は次表のとおり である。材積表材積が実材積と一致しているがどうかは材積式Y=a+bXにおいてa=0、b=1になるか否 かを検定することであり、こゝにY=実材積、X=現行材積表による材積とし、t表の1%水準を用いた。

樹種	経級範置囲	本数	Ш	帰 式	b の b-1	検 定 S(
÷	全資料	463	Y = 0.5671 + 0.8543X		0.1457	0.0092	
η	6~ 20	45	Y = -0.0	0022 + 1.2940 X	0.2940		0438
η	$22 \sim 40$	55	Y= 0.0	0303 + 1.0542 X	0.0542	0.	0667
11	$42 \sim 60$	136	Y = -0.1833 + 0.9158X		0.0842	0.0420	
11	62 ~	227	Y = 1.4846 + 0.7659 X		0.2341	0.0178	
ツガ	全資料	244	Y = 0.1920 + 0.8928X		0.1072	о.	0099
11	6 ~ 20	38	Y = -0.0097 + 1.1466X		0.1466	0.	0541
11	22 ~ 40	56	Y = 0.1750 + 0.8353X		0.1647	0.0687	
11	42 ~ 60	90	Y = 0.3954 + 0.8174 X		0.1826	0.0397	
11	62 ~	60	Y= 0.6	791 + 0.8294 X	0.1706	0.0308	
	a	の 検	 注 定		t 分布表		
t	a	S(a)	t	d•f	Øt(0.001)	適	否
15.836	0.5671	0.061	17 9.1	91 500	2.586	過	大
6.712	0.0022	0.005	53 0.4	15 45	2.690	過	少
0.812	0.0303	0.055	52 0.5	48 60	2.660	ú	窗
2.004	0.1833	0.102	28 1.7	83 150	2.609	Ď.	畜
13.151	1.4846	0.160	9.2	32 300	2.592	過	大
10.828	0.1920	0.036	58 5.2	17 300	2.592	過	大
2.709	0.0097	0.007	70 1.3	85 40	2.704	過	少
2.397	0.1750	0.056	55 3.0	97 60	2.660	過	大
4.599	0.3954	0.089	92 4.4	32 90	2.632	過	大
5.538	0.6791	0.212	27 3.1	92 60	2.660	過	大

上表の結果より、当局現行材積表は小経級においてはいづれも過小推定値を与え、中経級ではモミは適、 ッガは過大となり、大経級および全資料においてはモミ、ッガともに過大推定位を与えるものと判定する。

材積表調集	业業務資料	第9号	Ļ		
モミ ツガ	工木材積	【表 調	製記	兑明	書
	林		野		庁
	熊	本	営	林	层

.