木造組立家屋に関する研究 第3報

林野作業員宿舎 (B型) の実大剛性試験

沢		田	稔 ⁽¹⁾	
山	井	良	Ξ	郎 ⁽²⁾
高		見		勇(3)
近	藤		孝	(4)
杉	Щ		英	男(5)

まえがき

この試験は、東京大学生産技術研究所 池部 陽博士の設計になる寒冷地向林野作業員宿舎B型につい て、その設計用風圧荷重および多雪地域での積雪条件を考慮しておこなった実大剛性試験により、この試 験建物の耐力ならびに使用部材の性能を検討するために計画されたものであって、前報A型との関連にお いて実施された。

1. 試験の進め方について

この試験においても前報と同様、「使用部材試験」と「構造試験」に分け、さらに構造試験の方は記述の便宜上「分解試験」と「総合試験」とに区別している。

(1) 部材試験においては、この建物の骨組を構成する「わん曲登梁」および「通直登梁」をはじめと して、「床パネル」、「壁パネル」、「窓枠パネル」、「天井パネル」、「屋根パネル」、「リブ付パネル」などに ついて単純梁条件での見掛けの曲げ剛性 (*EI*) をもとめる。

(2) 分解試験では、表-1.1にしめすように9つの段階に分けて試験をおこない、とくに集成材骨組に 注目するとき、実際の節点条件と一般に構造上みなされている三鉸節条件とがどのように異なっているか を検討することがねらいとなる。つまり、この建物の骨組みについて三鉸節条件での理論計算と、実際の 荷重試験での差異をその剛性について明らかにしたいと考えたわけである。なお、このばあいの荷重方向 はすべて壁面に対し直角に加えられるはり間方向水平荷重である。

(3) 総合試験については表-1.1のように7種類の荷重組合せにより、この試験建物が設計用風圧荷重 または積雪荷重に近い荷重を受けたばあいの変形をもとめ、はたしてこの建物がこれら設計荷重に対して 十分建物としての剛性を有しているかどうかを検討するためのものである。

これら一連の試験をすべて三鉸節条件の理論値を基礎として比較するという方法ですすめることにした。

⁽¹⁾ 北海道大学農学部教授·前木材部材料科強度研究室長·林学博士

⁽²⁾ 木材部材料科強度研究室長·農学博士

⁽³⁾⁽⁴⁾ 木材部材料科強度研究室員

⁽⁵⁾ 木材部研究顧問·明治大学工学部助教授·工学博士

表-1.1 構 造 試 験 の 分 類

Table 1.1 Classification of structural test.

試験: Te pha	系列 st ase	記 号 Mark	組 立 状 況 Condition of assembly	接合条件 End joint condition	荷 重 区 分 Application of load	荷重伝達方式 Procedure of loading	荷重方向 Direction of loading	荷重条件 Loading condition
	1	H_0	二 連 ア ー チ Continuous two arch	三 鉸 節 Three hinge	二連, 水平荷重 Continuous two frame, Horizontal load	荷 重 梁 Loading beam	Y 6)	⁹⁾ ¹⁰⁾ ¹¹⁾ W, L, C
_	2	RB ₁	//	頂部・建物金具 ¹⁾ , 脚部 ・1 点チャンネル止め ²⁾	//		Y	W, L, C
est)分	3	RB_2	"	頂部・建物金具 ¹⁾ , 脚部 ・2 点チャンネル止め ³⁾	//	//	Y	W, L, C
ies t	4	RF	同,床パネル付 Fastening floor panel	"	//	"	Y	W, L, C
mpl 開	5	RL	同,リブ付パネル取付 Doing panel with rib	"	//	//	Y	W, L, C
asse 武	6	RW	同,壁パネル付 Doing wall panel	//	//	"	Y	W, L, C
artial	7	RC	同, 天井パネル付 Doing ceiling panel	"	"	"	Y	W, L, C
。 験	8	RR	同, 屋根パネル付 Doing roof panel	"	"	//	Y	W, L, C
	9	RG	同, 妻および間仕切りパネル 付, 1/2完成 Doing gable and partition panels, one- half completed house	11-	"	"	Y	W, L, C
	1	RF I	完 成 建 物 Completed house	頂部・建物金具') 脚部・基礎杭止め ⁴⁾	■ 壁 面 単 独,水 平 荷 重 Wall plane, Horizontal load	井桁梁 Loadirg pad	Y	W, L, C
総分	2	RF∐	"	"	屋根面単独,垂直荷重 Roof plane, Vertical load	"	X7)	W, L, C
ies tes	3	RFⅢ	"	//	壁・屋根面同時, 水平および垂直荷重 Wall+Roof planes, Horizontal & Vertical loads	"	X ⁷⁾ +Y	W, L, C
合 ssembl	4	RSI	"	"	屋根面全面,積雪荷重, 150 kg/cm ² . Entire surface of roof plane, Snow load	砂 袋 Sand bags	X 8)	С
olete a	5	RSI	"	"	屋根 1/2 面 (風上, 下側) 積雪荷重, 300kg/cm ² . 1/2 surface (windward & leeward sides), Snow load	11	X ⁸⁾	с
(Com]	6	RSⅢ	"	"	屋根 1/4 面 (風上側) 積雪荷重, 300 kg/cm ² . 1/4 surface (windward side), Snow load	"	X 8)	W
	7	RSIV	"	"	屋根 1/4 面 (風下側) 積雪荷重, 300 kg/cm ² . 1/4 surface (leeward side), Snow load	"	X ⁸⁾	L

.

- 72

2. 試験建物の構造概要

- 73 -

この試験建物の構造概要は図-2.1および図-2.2にしめすとおりである。な お、その構造にみられる特長は骨組みを形成している登梁に対し、リブ付パ ネルを用いて剛性上の補強をおこない,さらにわん曲登梁基部を2か所杭に ボルト接合していることといえよう。

また、この建物の高さは 4.28 m、軒高 2.89 m、床パネル下面まで 0.64 m (いずれも地盤からの高さ),わん曲登梁わん曲部でのはり間方向の間かくは 6.28m, 軒先端部間かくは 7.90m である (図版-2.1)。

なお,詳細については第1報を参照されたい。

設計用風圧荷重と積雪荷重 3.

このばあいの設計用風圧荷重は建物を閉塞形の構造物としてみることにす れば、その風力係数(C)の分布は図-3.1のようになる。なお、妻面に作用 する風力係数は風上面で C=0.9, 風下面で C=0.3 となる。 さらに, その 速度圧 (q) については前報A型と同様, 120kg/m² および 180kg/m² を考

Opposite windward and leeward sides in direction of ridge. direction (outward) Horizontal direction. Vertical 8 6 3 bolts. Base of curved beam jointed to one supporting point of channel with bolt. with 2 channel points of Top of straight beam jointed with metal block and bolt. two supporting to jointed beam curved of Base 7 (2) (4) (9) (9)

(inward)

Vertical direction

ц

8

≽

of

Combination

同時負荷

11)

Leeward loading. metal

bolt.

and

splice ;

with 1

foundation pile 風下負荷

to

beam

Base of

Note

10)

loading. jointed

Windward curved

風上負荷

C: 風力係数 Wind pressure Coefficient.

図-3.1 設計用風圧荷重の分布

Fig. 3.1 Distribution of wind load for design.

および妻面にそれぞれ作用することに なるわけである(試験の都合上妻面荷

また、積雪荷重については、これを 多雪地域におけるばあいとして考え, その単位重量 w'=3kg/m² (積雪1cm あたり)とすることにした。なお、こ の試験建物の屋根勾配が約19°であっ て30°にみたないから勾配による積雪

- 74 -

荷重の減少はないものとする。

4. 部 材 試 験

4.1 わん曲登梁(床梁) この部材は図-4.1.1にしめすような形状,寸法のもので,エゾマツおよびトドマツの挽板を用いて作られている。その曲げ剛性試験での支持点および荷重点の状況は図版-4.1のとおりであるが,後述するように,建物の骨組みとしてはラーメンとみなす関係上,図-4.1.2のような方法でその見掛けの曲げ剛性を計算した。すなわち,

P=作用荷重, δ =荷重 P のときの頂点の撓み

I=断面2次モーメント, E=ヤング係数

表-4.1 わん曲登梁(床梁)の曲げ剛性試験結果

Table 4.1 Results for flexural rigidity test of curved laminated beam. $I=\!1,\!427 \text{cm}^4 \pmod{\text{final}}$

試料 Beam No	撓 み $\Delta \delta_y$	自 重 W	曲げ剛性 EI	ヤング係数 <i>E</i>	比 剛 性 β
Dealli 100.	(10^{-3}cm)	(kg)	(10 ⁶ kgcm ²)	(10^3 kg/cm^2)	EI/W
1	1230	23.5	116.9	81.9	4.97
2	1250 * *	26.0	115.0	80.6	4.42
3	994	23.0	144.7	101.4	6.29
4	1192	24.5	120.6	84.5	4.92
5	965	23.5	149.0	104.4	6.34
6	970	24.5	148.2	103.9	6.05
7	1101	24.0	130.6	91.5	5.44
8	992	24.0	145.6	101.6	6.04
Mean	1087	24.1	133.8	93.7	5.56

 $\Delta \delta_y$:荷重点における100kg当たりの実測撓み Observed deflection per 100kg load at loading point. EI: Apparent flexural rigidity.

E: Young's modulus in bending.

W: Weight of beam.

とすれば,

曲げ剛性, $EI = \frac{sl^2P}{24 \delta}$

ただし、l = スパン; s = (部材長)/2

試験結果は表-4.1 のとおりである。これでみると,部材 8 本の平均剛性は約 134×10⁶kgcm² で,前報 A型の集成材の *EI*=333×10⁶kgcm² であったのにくらべるとかなり小さいことが分かる。そして,その 断面積ではA型集成材の約81%であるのに対し,その剛性がわずかに40%にすぎないことは材料経済の上 からみて一考を要することと思われる。

図-4.2 通直登梁の断面構成; 寸法および曲げ試験方法 Fig. 4.2 Section of straight laminated beam and manner of loading.

4.2 通直登梁 これは前記わ ん曲登梁と同じ断面を有する通直集 成材で,その挽板構成も全く同様で ある。図-4.2にその寸法および曲げ 剛性試験方法をしめす(図版-4.2.2)。 試験結果は表-4.2にみられるよう に,他の部材との接合のために作ら れた図-4.2のような切欠 が ある た め,この部材の見掛けの剛性がかな

表-4.2 通直登梁の曲げ剛性試験結果 Table 4.2 Results for flexural rigidity test of straight laminated beam.

試 料 Beam No.	撓 み $\Delta \delta_y$ $(10^{-3} { m cm})$	自 重 W (kg)	曲 げ 剛 性 <i>EI</i> (10 ⁶ kgcm ²)	ヤング係数 <i>E</i> (10 ³ kg/cm ²)	比 剛 性 β (<i>EI/W</i>)
	1000	01.0	110 (70 (Г. 43
1	1023	21.0	113.6	79.6	5.41
2	1034	21.5	115.1	80.7	5.35
3	1237	21.0	93.0	65.2	4.43
4	939	23.0	123.4	86.5	5.37
5	968	22.2	119.8	84.0	5.40
6	1015	21.5	114.3	80.1	5.32
7	840	24.0	138.3	96.9	5.76
8	1031	21.5	112.6	112.6 78.9	
Mean	1011	22.0	116.3	81.5	5.29
*5	778	22.2	149.3	103.7	6.73
*7	617	24.0	188.1	130.6	7.84
*8	755	. 21.5	153.6	106.7	7.14
Mean	717	22.6	163.7	113.7	7.24

 $\Delta \delta_y$:荷重点における100kg当たりの実測撓み Observed deflection per 100kg load at loading point.

EI : Apparent flexural rigidity.

E : Young's modulus in bending.

W: Weight of beam.

— 76 —

り低下しているようである。このばあいの剛性は平均約 116×10⁶kgcm² で,わん曲登梁の 87%になっている。しかし、後の骨組み剛性計算のさいの基礎となる剛性の値として別個に取り扱わねばならぬほど異なっているとも考えられないので、この骨組みを形成する部材として一括し、登梁の部材剛性は両者の平均値をとって 125×10⁶kgcm² と見ることにした。また、表-4.2 に上述の断面を 90°回転したばあいについての剛性を参考としてかかげたが、これは平均 164×10⁶kgcm² となって最も大きくなる。このことは、この部材の断面のとりかたに若干問題がありそうに思われる。

4.3 床パネルおよび壁パネル 床パネルと壁パネルは全く同一の形状寸法を有し,図-4.3のような 荷重方法により剛性試験をおこなったが,結果は表-4.3にしめすとおりである。これでみると,その曲げ 剛性の平均値は約 41×10⁶kgcm² で,A型の床パネルおよび壁パネルと同一幅に換算して比較するとつぎ のようになる。

(B型床パネルの EI)=(A型床パネルの EI)×0.82

(B型壁パネルの EI)=(A型壁パネルの EI)×2.35

つまり、床パネルでは約20%ていどA型より小さいが、壁パネルでは反対に2倍以上になっている。しか し、A型ではB型の壁パネルと窓枠パネルを総合したかたちになっているので、正しくは窓枠パネルの剛 性とも関連して比較すべきであろう。

種別	試 料	撓 み 	自 重 W	曲げ 剛 性 <i>EI</i>	換 算 曲 げ ヤング係数 E	上 剛 性 β	
Specimen	Panel No.	(10 ⁻³ cm)	(kg)	(10 ⁶ kgcm ²)	(10^3kg/cm^2)	(<i>EI/W</i>)	
	1	834	36.5	41.91	42.1	1.15	
壁パネル	2	862	38.0	40.55	40.7	1.07	
Floor	3	844	37.5	41.41	41.6	1.10	
panel	4	843	36.5	41.46	41.6	1.14	
	Mean	846	37.1	41.33	41.5	1.12	
	1	803	37.0	43.53	43.7	1.18	
	2	768	39.0	45.51	45.7	1.17	
	3	850	36.0	41.12	41.3	1.14	
	4	1030	36.0	33.93	34.1	0.94	
	5	839	36.0	41.66	41.8	1.16	
床パネル	6	758	37.5	46.11	46.3	1.23	
	7	853	36.5	40.98	41.1	1.12	
wall panel	8	920	36.5	37.99	38.1	1.04	
F	9	826	36.5	42.32	42.5	1.16	
	10	946	37.0	36.95	37.1	1.00	
	11	1019	36.5	34.30	34.4	0.94	
	12	835	37.5	41.86	42.0	1.12	
	Mean	871	36.8	40.52	40.7	1.10	
	All mean	864	36.9	40.72	40.9	1.10	

表-4.3 壁パネル,床パネルの曲げ剛性試験

Table 4.3 Results tor flexural rigidity test of floor and wall panel.

dô:荷重点における 100 kg 当たりの実測撓み Observed deflection per 100kg load at loading point. EI: Apparent flexural rigidity.

E : Young's modulus in bending.

W: Weight of panel.

図-4.3 壁および床パネルの断面構成; 寸法およ び曲げ試験方法

Fig. 4.3 Section of wall and floor panel and manner of loading.

4.4 窓枠パネル この部材の形 状,寸法および剛性試験方法を図-4.4に, またその験試結果を表-4.4にしめした。 これでみると,その平均曲げ剛性は約 35×10⁶kgcm²で,換算曲げヤング係数 が148 ton/cm² とかなり高い。これはA 型の壁パネルと比較しても剛性で約2倍 となる。このように壁および窓枠パネル の剛性がA型のそれに比して相当大きい ことは,この建物が妻面荷重をうけたば あいや,壁面での局部的変形に対し相当 大きな抵抗力のあることを期待しうるよ うに思われる。

4.5 天井パネル この部材の形状
 寸法および剛性試験寸法は図-4.5にしめ
 すとおりであり、その試験結果は表-4.5
 のようになったが、平均曲げ 剛 性 は 約
 31×10⁶kgcm² である。

4.6 屋根パネル これは天井バネ ルと直交しており両者はボルトによって 接合されている。この部材の形状寸法お よび剛性試験方法は図-4.6に,またその 試験結果は表-4.6にしめすとおりであ

	表-4.4	窓枠パネ	ルの曲げ	剛性試驗	贠	
Table 4.4	Results for	flexural	rigidity	test of	window	panel.

試 料 Panel No.	撓 み (10 ⁻³ cm)	自 重 W (kg)	曲 げ 剛 性 <i>EI</i> (10 ⁶ kgcm ²)	換 算 曲 げ ヤング係数 E (10 ³ kg/cm ²)	比 剛 性 β (<i>EI/W</i>)
1	936	27.5	33.74	142.8	1.23
2	868	31.0	36.39	154.1	1.17
3	893	28.5	35.37	149.7	1.24
4	863	30.0	36.60	155.0	1.22
5	910	28.0	34.71	147.0	1.24
6	880	29.5	35.89	151.9	1.22
7	980	27.1	32.23	136.5	1.19
8	910	29.5	34.71	147.0	1.18
Mean	904	28.9	34.96	148.0	1.21

Að:荷重点における 100 kg 当たりの実測撓み Observed deflection per 100kg load at loading point.

EI: Apparent flexural rigidity.

E : Young's modulus in bending.

W: Weight of panel.

木造組立家屋に関する研究 第3報(沢田・山井・高見・近藤・杉山)

,

	Table 4.5 Results for flexural rigidity test of ceiling panel.										
試 料	撓 み <i>Δδ</i>	自 重 W	曲 げ 剛 性 <i>EI</i>	換 算 曲 け ヤング係数 E	比 剛 性 β						
anel No.	(10 ⁻³ cm)	(kg)	(10 ⁶ kgcm ²)	$(10^{8} kg/cm^{2})$	(EI/W)						
1	1203	30.0	29.05	60.9	0.97						
2	1199	29.0	29.15	61.1	1.01						
.3	1150	31.0	30.39	63.7	0.98						
4	1095	31.0	31.92	66.9	1.03						
5 ·	1094	31.0	31.95	67.0	1.03						
6	1136	31.1	30.77	64.5	0.99						
7	966	32.0	36.18	75.8	1.13						
8 ·	1120	30.5	31.21	65.4	1.02						
9	1097	30.5	31.86	66.8	1.04						
10	1109	30.1	31.52	66.1	1.05						
11	988	31.0	35.38	74.1	1.14						
12	1145	30.0	30.53	64.0	1.02						
13	1175	30.0	29.75	62.3	0.99						
14	1158	31.0	30.18	63.2	0.97						
15	1213	30.0	28.82	60.4	0.96						
16	1102	29.5	31.72	66.5	1.08						
17	1007	30.0	34.71	72.7	1.16						
18	1130	31.5	30.93	64.8	0.98						
19	1163	31.0	30.05	63.0	0.97						
20	1061	30.5	32.94	69.0	1.C8						
21	1156	29.5	30.24	63.4	1.03						
22	1117	30.0	31.29	65.6	1.04						
23	1171	28.5	29.85	62.6	1.05						
24	1021	30.5	34.23	71.7	1.12						
Mean	1116	30.4	31.44	65.9	1.04						

表-4.5 天井パネルの曲げ剛性試験 `able 4.5 Results for flexural rigidity test of ceiling panel.

 $\Delta \delta$:荷重点における 100 kg 当たりの実測撓み Observed deflection per 100 kg load at loading point.

EI: Apparent flexural rigidity.

0

F

E : Young's modulus in bending.

W: Weight of panel.

- 79 -

る。その平均曲げ剛性は約31×10⁶kgcm² で天 井パネルとほぼ同等である。しかし,その重さ からみれば天井パネルよりも若干すぐれている ようにみられる(図版-4.6.2)。

4.7 リブ付パネル このパネルは通直登 梁を骨組みの頂部付近で支えるための補強材と みられるが,図-4.7.1のような形状寸法の部材 を図-4.7.2のように組み合わせて構成される。 その剛性試験方法はこれらの図にみられるよう なものであって,試験結果は表-4.7.1および表 -4.7.2にしめした。このパネルの単一部材につ いての平均曲げ剛性は約 23.5×10⁶kgcm² であ

表-4.6	屋	根	パ	ネ	N	Ø	曲	げ	剛	性	試	験	

試 料	撓 み 	自 重 W	曲 げ 剛 性 <i>EI</i>	換 算 曲 げ ヤング係数	比 剛 性
Panel No.	(10 ⁻³ cm)	(kg)	(10 ⁶ kgcm ²)	(10^3kg/cm^2)	(EI/W)
1	4180	25.0	29.11	66.3	1.16
2	3850	24.0	31.61	72.0	1.32
3	4450	24.0	27.35	62.3	1.14
4	3610	24.5	33.71	76.8	1.38
5	3700	25.0	32.89	74.9	1.37
6	3815	25.0	31.90	72.7	1.28
7	4070	23.5	29.90	68.1	1.27
8	3705	24.0	32.84	74.8	1.37
9	4020	23.5	30.27	69.0	1.29
10	3450	25.0	35.27	80.3	1.41
11	3750	26.0	32.45	73.9	1.25
12	4040	23.5	30.12	68.6	1.28
13	3470	24.5	35.07	79.9	1.43
14	3410	25.5	35.69	81.3	1.40
15	4050	23.5	30.05	68.5	1.28
16	4270	23.5	28.50	64.9	1.21
17	3950	24.5	30.81	70.2	1.26
18	4190	24.5	29.04	66.2	1.19
19	3570	24.0	34.09	77.7	1.42
20	3455	25.0	35.22	80.2	1.41
21	4790	23.2	25.41	57.9	1.10
22	3800	24.5	32.02	72.9	1.31
Mean	3891	24.3	31.51	71.8	1.30

Table 4.6	Results	for	flexural	rigidity	test	of	roof	panel.

Δδ:荷重点における 100 kg 当たりの実測撓み Observed deflection per 100kg load at loading point. EI: Apparent flexural rigidity.

E : Young's modulus in bending.

W: Weight of panel.

- 80 -

る。

4.8 部材の比剛性(部材の曲げ剛性の自重に対する比) いま,これまでのべた各部材の比剛性 β をみると,リブ付パ ネルの0.64を最小とし,わん曲登梁の5.56を最大としている ことがわかる。これらの部材のうち,A型と比較しうるもので みると,

i) 骨組みを構成する集成材では、その単位長さあたりの比 剛性で、A型は2.45 であるのに対し、B型では0.75 となって 相当低いことがわかる。むろん、B型のばあいは補強材として

図-4.7.1 リブ付パネルの断面構成; 寸法および曲げ試験方法 Fig. 4.7.1 Section of panel with rib and manner of loading.

図-4.7.2 リブ付パネルを組立てたさい の試験方法

Fig. 4.7.2 Manner of vertical loading for panel with rib.

試料 Panel No.			曲 げ 剛 性 EI	換算曲げ ヤング係数 E	
	(10 ⁻ °cm)	(Kg)	(10°kgcm ²)	(10°kg/cm²)	(EI/W)
1	1483	36.0	21.95	69.5	0.61
2	1275 •	38.0	25.53	80.9	0.67
3	1266	35.5	25.71	81.4	0.72
4	1640	36.5	19.85	62.9	0.54
5	1402	37.5	23.22	73.6	0.62
6	1288	37.0	25.27	80.0	Ó.68
7	1360	38.0	23.94	75.8	0.63
8	· 1471	36.5	22.13	70.1	0.61
Mean	1398	36.9	23.45	74.3	0.64

表-4.7.1 リブ付バネルの曲げ剛性試験 Table 4.7.1 Results for flexural rigidity test of panel with rib.

 $\Delta\delta$:荷重点における 100 kg 当たりの実測携み Observed deflection per 100kg load at loading point. EI: Apparent flexural rigidity.

E : Young's modulus in bending.

W: Weight of panel.

— 81 —

(10-9)

表-4.7.2 リブ付パネルの曲げ剛件試験

Table 4.7.2 Results for flexural rigidity test of panel with rib.

		(10 °cm)
試料組合せ Combination of panel	頂点の垂直撓み <i>4</i> δ _x	側面の水平撓み <i>4</i> δ _y
1 と 2	210	-
3 と 4	164	
5 と 6	169	224
7と8	203	466

Δδ:荷重 100 kg 当たりの値

Observed deflection per 100kg load.

若干A型の方の比剛性が大きくなっている。

リプ付パネルなどを加えているので両者の骨 組みの差がこの数字でしめされるものと等し くなるとはいえないけれども、少なくとも、 積雪などによる屋根の耐力については若干の 心配は残るようである。

ii) 壁パボルでは,単位面積(1m²)あた
 りに換算すれば,A型では 0.275,B型では
 0.470 ていどになって,これではB型の方が
 すぐれていることが分かる。

iii) 屋根パネルではB型は天井パネルをふ くめて考えると、同様単位面積あたりで換算 すると、A型で約1.22、B型で約0.95で、

iv) 床パネルでも同様の換算比剛性をみると、A型で約 0.60、B型で約 0.45 で、これも若干B型の方が低いようである。

以上,部材試験についての概要をのべたが,これら部材の断面構成その他有効な剛性を増大するような 設計に対して,今後いっそうの配慮と研究がのぞまれる。

5. 構造試験

この建物は主として一般寒地向に設計されているので、主たる荷重を風圧と積雪にとり剛性試験をおこ なった。試験の実施順序は、まず最初に建物を完成させ、これに対してやや分布荷重に近い方式で風圧荷 重試験をおこない、つぎに砂袋を屋根面に積載して積雪荷重試験をおこなった。この完成建物に対する両 試験をここでは総合試験と呼ぶが、風圧荷重と積雪荷重の和を意味するものではない。その後さらに、中 央の間仕切りパネルから片側の妻パネルにいたる区間の建物半分を対象に、組立ての順序にしたがって、 集中荷重方式による水平荷重を加える分解試験(解析試験)をおこなったのであるが、説明の便宜上、分

解試験から総合試験の順に述べることにする。

5.1 接合概要 この試験建物の構造お よび接合方法については,第1報に詳細に述 べられているので,簡単にその概要を図示す ることにする。この建物の正面,側面および 横断面についてはすでに図-2.1,2.2 に示し たので,ここでは接合方法の概要を図示する ことにする。まず最初に,総合試験における 実際の建物について,その骨組みの組立て状 況を図版-5.1に示す。つぎに,わん曲登梁を 地杭,通直登梁,リプ付パネル等に接合する方 法とその概況を図-5.1および図版-5.2に,ま

- 82 -

5

木造組立家屋に関する研究 第3報(沢田・山井・高見・近藤・杉山)

た,頂部のボルト接合方法とその概況を図-5.2お よび図版-5.3に示す。さらに,各種部材相互の接 合方法とパネルのとりつけ状況を図-5.3および図 版-5.4に示す。一般の場合と異なる特徴は各種パ ネルにより構造剛性の増大を期待している点であ ろう。なお,この建物の主要寸法についてはすべ て実測寸法をとることにした。

5.2 分解試験 この試験ではすべて完成建物の半分を対象にし、これに水平方向の集中荷重を加え、集成材骨組みの主要部位における撓みを 測定した。すなわち、図-5.4に模式的に示すよう に、まず最初に、集成材骨組みの頂部および脚部 をピン条件で接合し、その後これをボルト条件に 変え、両条件における骨組み剛性の比較をおこなった。つぎに、ボルト接合条件のもとで、これ に、床パネル、リブ付パネル、壁パネル(窓枠パ ネルを含む)、天井パネル、屋根パネル、妻およ び間切りパネルを順次とりつけ、各種パネルの装 着による建物剛性の変化を検討した。

5.2.1 試験方法 この試験は表-1.1に示す 試験系列の中の1から9までで、すべて荷重梁を

図-5.1.3 わん曲登梁とリブ付パネルの接合方法 Fig. 5.1.5 Joint for curved laminated beam & panel with rib.

図-5.2 頂部のボルト接合法(リブ付パネルつき) Fig. 5.2 Details of top joint under bolted frame condition.

- 83 -

Fig. 5.3 Details of joint methods for assembly members.

- 84 -

木造組立家屋に関する研究 第3報(沢田・山井・高見・近藤・杉山)

介して,はり間方向に水平荷重を加 えたときのものである。この場合の 集成材骨組みの記号および主要寸法 を図-5.5に示す。なお,ボルト接合 の場合の寸法は完成建物における寸 法と同じであるが,ピンによる三鉸 節の場合は金具取付けの関係で,ス パンが約 20 cm,高さが約 3 cm 程 度大きくなっている。

i) 集成材骨組みの接合 試験 系列の1は三鉸節条件の場合である が、このときの集成材骨組みの頂部 および脚部の接合には図-5.6, 5.7 に示すようなピン金具を用い回転自 由としている。なお、通直登梁とわ ん曲登梁とが接する肩部(軒先)の接 合には図-5.8に示すような金具を用 い、できるだけ剛節点条件に近づけ るよう考慮した。これらの実際の状 況は図版-5.5のとおりである。また 試験系列の2から9まではボルト接 合条件の場合であるが、このときの 頂部,脚部および肩部の接合は図-5. 9,5.10, 5.1.2に示す方法によった。

図-5.4 分解試験における骨組条件と各種パネルのとりつけ状況 Fig. 5.4 Frame conditions fastening various panels at partial assembly test.

図-5.5 集成材骨組の記号およ び寸法条件

Fig. 5.5 Mark and dimensions of laminated timber frame under bolted condition.

():三鉸節条件

Three hinged condition.

()):総合試験における荷重点(壁面荷重)

Loading point at complete assemblies test.

- 85 -

図-5.7 脚部ピン接合法(三鉸節条件) Fig. 5.7 Details of base hinge (Three hinged frame condition).

(mm)

100

Ļ

図-5.10 脚部のボルト接合法 Fig. 5.10 Details base joint under bolted frame condition.

120-140

260

その具体的な状況は図版-5.6に示すが, 脚部の接合以外は実際の建物金具を使用 している。なお,脚部をチャンネルに固 定する場合,ピン金具のときと同じよう に1か所だけボルト接合している場合 (*RB*₁)と,実際の建物脚部と同じように 2か所ボルト接合している場合(*RB*₂) とがある。このような条件で集成材骨組 みの剛性試験をおこなったのち,各種パ ネルをとりつけたわけであるが,部材相 互の接合方法や実際の状況は図-5.3およ び 図版-5.2, 5.3, 5.4 に示したとおり である。

ii) 荷重の加え方 荷重梁(加力用 集成梁)を用いてはり間方向に水平荷重 を加える状況を図-5.11 に示すが、どの 場合も荷重梁の自重を相殺するため図版 -5.7に示すように、梁の両側にワイヤー を結び、滑車を通して同重量の分銅を下 げ平衡させた。なお、三鉸節条件の場合 は頂部の接合金具と通直登梁の重量も相 殺するため同様の処置をおこなった。ま た、わん曲登梁に荷重梁が接するところ は図版-5.5.3にみられるような集成材プ ロックを用いた。

分解試験の場合の荷重装置は,第2報 の場合と同じく移動式構造試験機(油 圧,電動式,能力4,000kg)を用い, 荷重タワーの滑車を介して張られたワイ ヤーロープにより引張る方式である。負 荷要領は風上側単独,風下側単独,風上 下側同時のそれぞれにつき,3回ずつ繰 り返えして荷重を加えたが,荷重の大き さは風上と風下とは全く相等しい。風上 下側同時の場合は2基のポータブルラム で,それぞれ単独の場合と等しい荷重を 両側に同時に負荷している。

図-5.11.1 三鉸節条件骨組の水平加力方法 (H₀) Fig. 5.11.1 Manner of applying horizontal loads (Three hinged frame condition, H₀).

図-5.11.2 ボルト接合条件骨組の水平加力方法 (RB₁) Fig. 5.11.2 Manner of applying horizontal loads (Bolted frame condition, RB₁).

図-5.11.3 ボルト接合条件骨組の水平加力方法 (RB₂) Fig. 5.11.3 Manner of applying horizontal loads (Bolted frame condition, RB₂).

iii) 変形量の測定方法 変形量の測定には、変形の大きな場合には 1 mm 目盛で 300 mm 長さの竹 尺, 変形の小さな場合には 10⁻²mm 目盛で 10~30 mm ストロークのダイヤルゲージを用いた。測点と しては集成材骨組みの頂部にあたるD点, 肩部のC, E点, 荷重点のM (風上), N (風下)点, 脚部の 接合点にあたるA, Gより 25 cm 外側に設けたS, T点をえらんだが, この他に, リブ付パネルのわん 曲部と通直登梁の接するP, Q点, リブ付パネルの直立部中央にあたるH, J点, リブ付パネルと床パネ ルの接するU, V点, さらに, 床面上で脚部の両ポルト間の中央にあたる U', V'点等もえらんだ。その 測定具セットの状況は図版-5.5.3, 5.6.1, 5.8に例示したとおりである。

5.2 試験結果 この試験で求めた各種組立て条件に対する実測結果を,集成材骨組み部位,リブ付

区分記号	荷重条件	試験回数		$\Delta \delta_{y} - D$	•		$\Delta \delta_{y-E}$		
Mark	Loading condition	Number of test	A	В	М	A	В	M	A
三鉸節	風 上 (W)	24 25 26 M	10100 10900 11000 10667	9400 10100 10250 9917	9750 10500 10625 10292	7050 7750 7800 7533	6900 7400 7500 7267	6975 7575 7650 7400	9150 9750 9900 9600
アーチ(二)	風 下 (L)	28 29 30 M	8650 8450 8050 8383	8350 8350 8450 8383	8500 8400 8250 8383	7150 7050 7100 7100	7250 6950 7050 7083	7200 7000 7075 7092	6850 6800 6850 6833
<u></u> 建 H ₀	同 時 (C)	21 22 23 M	16267 16000 16133 16133	15267 15067 15200 15178	15767 15534 15667 15656	11933 11600 11600 11711	11800 11600 11533 11644	11867 11600 11567 11678	14133 14133 14200 14155
剛 節 点 ア ーチ (床梁一点剛節)	風 上 (W)	34 35 36 M	12000 10933 11333 11422	12200 11333 11733 11755	12100 11133 11533 11589	9600 8333 8800 8911	9133 8400 8533 8689	9367 8367 8667 8800	10667 9933 10200 10267
	. 風 下 (L)	37 38 39 M	8200 8267 8000 8156	8200 8000 8000 8067	8200 8134 8000 8111	7333 7200 7200 7244	7067 6933 7067 7022	7200 7067 7134 7133	6267 6267 6267 6267
RB ₁	同 時 (C)	31 32 33 M	20267 18667 17467 18800	19600 18667 17333 18533	19834 18667 17900 18667	16800 15867 14533 15733	15627 15200 13867 14898	16214 15534 14200 15316	16267 15600 14800 15556
剛 (床	風 上 (W)	43 44 45 M	2900 2850 2875 2875	2925 2900 2875 2900	2913 2875 2875 2875 2888	1600 1575 1575 1583	1450 1425 1410 1428	1525 1500 1493 1506	3325 3325 3300 3317
(点アーチ	風 下 (L)	46 47 48 M	2650 2400 2425 2492	2600 2375 2400 2458	2625 2388 2413 2475	2975 2800 2800 2858	2925 2750 2725 2800	2950 2775 2763 2829	1415 1300 1300 1342
RB_2	同 時 (C)	40 41 42 M	6000 5900 5950 5950	5750 5850 5900 5833	5875 5875 5925 5892	4950 5100 5050 5033	4900 4950 4800 4883	4925 5025 4925 4958	4950 5100 5100 5050

Table 5.1.1 Observed deflection at measuring points of test

表-5.1.1 各種組立条件における集成

パネル部位、床パネル部位の3つに分けて表-5.1に示す。いま、この試験での集成材骨組みを三鉸節条件 とみなし、はり間方向に水平荷重を加えた場合の頂点D、肩部C、E、荷重点M、Nなどの100kg あた りの y 方向水平撓み δ_y を計算し、この値と各種組立て条件における 実測変形量とを比較すれば表-5.2 のごとくなる。まず、三鉸節条件での計算値 (H_c)を基準とし、これに対する実測値 (H_0)の比率を求 めれば、0.60から 0.91 に変動しているが、全般的には実測値は計算値の約75%程度にとどまっている。 しかし、これを荷重条件別にみると、風上荷重の場合は約87% となりかなり良好な適合度を示している が、風下荷重、同時荷重の場合は72%、66% と低下する 結果となり、必ずしも 三鉸節条件を満たして いるとはみなせないようである。これに対し、さきに報告したA型建物では約97% にも達し、きわめて

材骨組の各点の撓み(Δδ:10-3cm/100kg)

$\Delta \delta_{y-C}$			$\Delta \delta_{y-N}$			$\Delta \delta_{y} - M$			$\Delta \delta_{x-D}$	
В	Μ	А	В	М	А	В	М	А	В	М
8200	8175	5900	5850	5875	7850	7000	7425	2350	1800	2075
9100	9425	6500	6400	6450	8450	7600	8025	2250	1950	2100
9100	9500	6500	6350	6425	8600	7700	8150	2500	2050	2275
8800	9200	6300	6200	6250	8300	7433	7867	2367	1933	2150
6700 6400 6600 6567	6775 6600 6725 6700	6150 6050 6100 6100	6200 6100 6150 6150	6175 6075 6125 6125	5550 5650 5700 5633	5300 5200 5300 5267	5425 5425 5500 5450	-1100 -1100 -1000 -1067		
13720	13927	10133	10067	10100	12067	10800	11434	2133	1 400	1767
13200	13667	9933	9933	9933	12200	11333	11767	2600	1 267	1934
12933	13567	9867	10000	9934	12133	11067	11600	2733	1 333	2033
13284	13720	9978	10000	9989	12133	11067	11600	2489	1 333	1911
10533	10600	7467	5733	6600	9133	10267	9700	2000	1800	1900
10267	10100	6667	5467	6067	8467	9867	9167	2133	1600	1867
10533	10367	7067	5600	6334	8800	10267	9534	2133	1800	1967
10444	10356	7067	5600	6334	8800	10134	9467	2089	1733	1911
6667	6467	6000	7467	6734	5400	6267	5834	$ \begin{array}{r} -1400 \\ -1200 \\ -1200 \\ -1267 \end{array} $	-1800	1600
6400	6334	5600	6933	6267	5400	6267	5834		-1600	1400
6400	6334	5733	7 <i>2</i> 00	6467	5400	6267	5834		-2000	1600
6489	6378	5778	7 <i>2</i> 00	6489	5400	6267	5834		-1800	1533
16267	16267	12800	13067	12934	14000	16000	15000	0	0	0
16267	15934	12000	11733	11867	13333	14400	13867	267	0	134
13867	14334	11467	11733	11600	12267	13333	12800	267	400	334
15474	15515	12089	12178	12134	13200	14578	13889	178	133	156
3550	3438	1250	1075	1163	2925	2972	2949	2825	3050	2938
3600	3463	1250	1057	1154	2900	2950	2925	2800	3025	2913
3550	3425	1250	1050	1150	2850	2850	2850	2800	2975	2863
3567	3442	1250	1061	1155	2892	2924	2908	2808	3017	2913
1550	1488	2430	2275	2353	1175	1175	1175	2750	2500	2625
1350	1325	2275	2175	2225	1050	1029	1040	2425	2500	2463
1300	1300	2275	2175	2225	1025	1133	1079	2450	2500	2475
1400	1371	2327	2208	2268	1083	1112	1098	2542	2500	2521
5300	5125	3950	3750	3850	4200	4150	4175	50	50	50
5300	5200	4050	3800	3925	4350	4350	4350	50	50	50
5300	5200	4050	3650	3850	4350	4400	4375	50	0	25
5300	5175	4017	3733	3875	4300	4300	4300	50	33	42

frame under various conditions of assembly (unit: $\times 10^{-3} \rm cm/100 kg)$.

表-5.1.1 (つづき) Table 5.1.1 (Continued)

区分記号	荷重条件	試験回数				$\Delta \delta_{y-E}$	$\Delta \delta_{y-E}$		
Mark	Loading condition	Number of test	A	В	М	А	В	М	A
剛節	風 上 (W)	52 53 54 M	3000 2950 3000 2983	2900 2875 2850 2875	2950 2913 2925 2929	1675 1650 1700 1675	1500 1475 1475 1483	1588 1563 1588 1579	3175 3200 3200 3192
点(床三枚	風 下 (L)	55 56 57 M	2550 2350 2400 2433	2550 2400 2425 2458	2550 2375 2413 2446	3025 2900 2875 2933	2950 2850 2825 2875	2988 2875 2850 2904	1400 1300 1275 1325
付 RF	同 時 (C)	49 50 51 M	5600 5900 5750 5750	5700 5850 5700 5750	5650 5075 5725 5750	4950 5100 5000 5017	5000 5000 4800 4933	4975 5050 4900 4975	4650 4750 4600 4667
剛節	風 上 (W)	61 62 63 M	2525 2475 2475 2492	2500 2475 2450 2475	2513 2475 2463 2483	2075 2050 2050 2058	2050 2050 2050 2050	2063 2050 2050 2054	2125 2100 2075 2100
点(リブ付)	風 下 (L)	64 65 66 M	2475 2450 2400 2442	2475 2450 2400 2442	2475 2450 2400 2442	2150 2100 2075 2108	2175 2150 2125 2150	2163 2125 2100 2129	2000 1950 1975 1975
RL	同 時 (C)	58 59 60 M	5100 5000 4900 5000	5100 4900 4850 4950	5100 4950 4875 4975	4350 4200 4150 4233	4300 4200 4150 4217	4325 4200 4150 4225	4250 4050 4100 4133
岡川	風 上 (W)	70 71 72 M	2150 2050 2100 2100	2250 2125 2100 2158	2200 2088 2100 2129	1700 1625 1650 1658	1800 1725 1750 1758	1750 1675 1700 1708	1825 1750 1775 1783
節 点 壁	風 下 (L)	73 74 75 M	2100 2000 1975 2025	2100 2050 2025 2058	2100 2025 2000 2042	1725 1650 1650 1675	1775 1700 1700 1725	1750 1675 1675 1700	1750 1675 1675 1700
t¶ RW	同 時 (C)	67 68 69 M	4350 4350 4250 4317	4450 4500 4250 4400	4400 4425 4250 4358	3550 3600 3450 3533	3600 3650 3600 3617	3575 3625 3525 3575	3700 3700 3600 3667
剛	風 上 (W)	79 80 81 M	2025 2000 2000 2008	2050 2050 2025 2042	2038 2025 2013 2025	1625 1575 1600 1600	1675 1650 1650 1658	1650 1613 1625 1629	1750 1750 1725 1742
点(天井	風 下 (L)	82 83 84 M	1925 1875 1900 1900	1975 1900 1900 1925	1950 1888 1900 1914	1550 1525 1525 1533	1650 1625 1575 1617	1600 1575 1550 1575	1600 1600 1575 1592
TT RC	同 時 (C)	76 77 78 M	4200 4150 4150 4167	4350 4150 4150 4217	4275 4150 4150 4192	3400 3350 3300 3350	3500 3450 3450 3467	3450 3400 3475 3408	3600 3600 3600 3600

— 90 —

$\Delta \delta_{y-C}$			$\Delta \delta_{y-N}$			$\Delta \delta_{y-M}$			$\Delta \delta_{x-D}$	
В	М	Α	В	М	А	В	М	A	В	М
3425 3400 3350 3392	3300 3300 3275 3292	1225 1225 1225 1225 1225	1075 1125 1100 1100	1115 1175 1163 1163	2925 2950 2950 2942	3075 3150 3100 3108	3000 3033 3017 3025	2825 2850 2800 2825	3050 3025 2975 3017	2938 2938 2888 2921
1650	1525	2350	2275	2313	1250	1400	1325	2600	2450	2525
1450	1375	2300	2200	2250	1125	1225	1175	2600	2525	2563
1400	1338	2275	2200	2238	1125	1175	1150	2500	2525	2513
1500	1413	2308	2225	2267	1167	1267	1217	2567	2500	2533
5000	4825	3800	3750	3775	4250	4500	4375	250	100	175
5050	4900	3850	3800	3825	4300	4600	4450	50	50	50
4900	4750	3800	3700	3750	4200	4500	4350	300	250	275
4983	4825	3817	3750	3783	4250	4533	4392	200	133	167
2150	2138	1625	1625	1625	2000	1650	1825	25	75	50
2150	2125	1575	1600	1588	1950	1650	1800	25	25	25
2175	2125	1600	1600	1600	1900	1675	1788	25	50	38
2158	2129	1600	1608	1604	1950	1658	1804	25	50	38
2125	2063	1725	1750	1738	1800	1575	1688	- 75	-100 -100 -100 -100 -100	88
2100	2025	1675	1725	1700	1750	1550	1650	-100		100
2100	2038-	1650	1700	1675	1775	1550	1663	-100		100
-2108	2042	1683	1725	1704	1775	1558	1667	- 92		96
4200	4225	3350	3450	3400	3650	3550	3600	100	0	50
4150	4100	3300	3350	3325	3650	3500	3575	50	50	50
4100	4100	3250	3300	3275	3650	3500	3575	50	50	50
4150	4142	3300	3367	3333	3650	3517	3583	67	33	50
1950	1888	1425	1475	1450	1600	1425	1513	50	25	38
1850	1800	1350	1400	1375	1525	1325	1425	50	75	63
1875	1825	1400	1425	1413	1550	1375	1463	50	75	63
1892	1838	1392	1433	1413	1558	1375	1467	50	58	54
1775	1763	1525	1525	1525	1400	1275	1338	$ \begin{array}{r} - 75 \\ -100 \\ -100 \\ - 92 \end{array} $	-50	-63
1700	1688	1450	1475	1463	1350	1225	1288		-50	-75
1700	1688	1475	1475	1475	1350	1225	1288		-50	-75
1725	1713	1483	1492	1488	1367	1242	1304		-50	-71
3700	3700	3050	3050	3050	3200	27C0	2950	-50	0	25
3750	3725	2950	3050	3000	3100	2700	2900	-50	0	25
3750	3675	2850	3000	2925	3000	2650	2825	-50	0	25
3733	3700	2950	3033	2992	3100	2683	2892	-50	0	25
1775 1775 1800 1783	1763 1763 1763 1763	1325 1325 1350 1333	1400 1375 1375 1383	1363 1350 1363 1358	14C0 14C0 14C0 14C0 1400	1325 1325 1300 1317	1363 1363 1350 1358	64 64 63 64	55 55 54 55	60 60 59 59
1700	1650	1400	1400	1400	1250	1100	1175	-65	77	71
1650	1625	1350	1375	1363	1200	1050	1125	-65	75	70
1625	1600	1375	1400	1388	1200	1100	1150	-64	74	69
1653	1625	1375	1392	1383	1217	1083	1150	-65	75	70
3650 3600 3600 3617	3625 3600 3600 3608	2950 2900 2850 2900	2900 2900 2850 2883	2925 2900 2850 2892	2800 2750 2800 2117	2700 2700 2600 2667	2750 2725 2700 2392	$ \begin{array}{c c} -3 \\ 0 \\ 0 \\ -1 \end{array} $	$ \begin{array}{r} -21 \\ -19 \\ -18 \\ -19 \end{array} $	-12 -10 -9 -10

表-5.1.1	(つづき)

区分記号	荷重条件	試験回数		$\Delta \delta_{y-D}$.			$\Delta \delta_{y-E}$		
Mark	Loading condition	Number of test	Α	В	М	Α	В	М	A
剛 節 点 (屋根付) RR	風 上 (W)	88 89 90 M	2125 2100 2100 2108	2150 2100 2125 2125	2138 2100 2113 2017	1675 1650 1650 1658	1650 1650 1650 1650	· 1666 1650 1650 1654	1850 1775 1725 1783
	風 下 (L)	91 92 93 M	2100 1975 1975 2017	2000 1925 1950 1958	2050 1950 1963 1988	1675 1625 1600 1633	1675 1575 1550 1600	1675 1600 1575 1617	1650 1575 1575 1600
	同 時 (C)	85 86 87 M	4300 4200 4250 4250	4400 4300 4250 4317	4350 4250 4250 4283	3550 3450 3450 3483	3400 3400 3400 3400	3317 3425 3425 3442	3550 3450 3450 3483
剛節点 (完成 1	風 上 (W)	97 98 99 M	281 291 290 288	305 314 314 311	293 303 302 299	201 209 208 206	233 239 236 236	217 224 222 221	233 240 239 237
	風 下 (L)	100 101 102 M	308 295 292 298	346 329 326 334	327 312 309 316	258 246 246 250	300 283 281 288	279 265 264 269	220 211 211 214
2 RG	同. 時 (C)	94 95 96 M	679 607 593 626	738 668 659 688	709 638 626 657	538 479 469 495	563 549 543 552	551 514 506 524	524 469 459 484

Table 5.1.1 (Continued)

注:M=Mean

表-5.1.2 各種組立条件におけるリブ付

Table 5.1.2 Observed deflection at measuring points of panel member

区分記号	荷重条件	試験回数	· · · · ·	$\Delta \delta_{y-Q}$		$\Delta \delta_{y} - P$		
Mark	Loading condition	Number of test	A	В	М	А	В	
剛	風 上 (W)	61 62 63 M	2450 2400 2450 2433	2500 2500 2300 2433	2475 2450 2375 2433	2500 2500 2500 2500	2500 2500 2500 2483	
卸 点 リブ	風 下 (L)	64 65 66 M	2425 2400 2375 2400	2350 2425 2450 2408	2388 2413 2413 2404	2400 2350 2350 2367	2400 2350 2350 2367	
竹 、 <i>RL</i>	同 時 (C)	58 59 60 M	5000 4900 4850 4917	4900 4750 4800 4817	4950 4825 4825 4867	5000 4850 4800 4883	5000 4800 4800 4867	

.

. - 92 -

$\Delta \delta_{y-C}$			$\Delta \hat{o}_{y-N}$			$\Delta \delta_{y-M}$		-	$\Delta \delta_{x-D}$	
В	М	A	В	М	A	В	М	A	В	М
1825 1850 1850 1842	1838 1813 1788 1813	1450 1425 1425 1433	1500 1450 1450 1467	1475 1438 1438 1450	1500 1475 1475 1483	1500 1525 1525 1517	1500 1500 1500 1500	83 84 87 85	38 38 38 38 38	61 61 63 61
1750 1675 1650 1692	1700 1625 1613 1646	1475 1425 1425 1425 1442	1500 1400 1425 1442	1488 1413 1425 1442	1300 1250 1250 1267	1400 1300 1300 1333	1350 1275 1275 1300	-38 -38 -38 -38	95 92 91 93	67 65 65 65
3700	3625	3050	3050	3050	2850	2900	2875	47	53	-3
3700	3575	2950	2950	2950	2750	2900	2825	42	55	-6
3700	3575	2950	2950	2950	2750	2950	2825	43	55	-6
3700	3592	2983	2983	2983	2783	1917	2850	44	54	-5
258	246	170	188	179	218	241	230	46	40	43
267	254	176	196	186	222	252	237	46	43	45
266	253	175	195	185	222	250	236	47	43	45
264	251	174	193	183	221	248	234	46	42	44
278	249	310	309	310	169	203	186	26	49	38
267	239	275	296	282	164	199	182	24	47	36
266	239	271	297	284	163	196	180	23	47	35
270	242	285	301	293	165	199	182	24	48	36
575	550	527	490	509	443	522	483	24	-1	12
514	492	468	497	483	402	436	419	24	-6	6
510	485	458	495	477	390	411	401	22	-6	5
533	509	484	494	489	412	456	434	23	-4	8

パネルの各点の撓み (Δδ:10-³cm/100kg)

with rib under various conditions of assembly (unit : $\times 10^{-3}$ cm/100kg)

		$\Delta \delta_y - J$		$\Delta \delta_{y-H}$				
М	А	В	М	A	В	М		
2500 2500 2475 2492	1250 1375 1225 1283	1325 1275 1275 1292	1288 1325 1250 1288	1325 1325 1325 1325 1325	1350 1350 1350 1350 1350	1338 1338 1338 1338		
2400 2350 2350 2367	1300 1275 1250 1275	1375 1375 1300 1350	1338 1325 1 <i>2</i> 75 1313	1275 1225 1225 1225 1242	1300 1250 1250 1267	1307 1238 1238 1254		
5000 4825 4800 4875	2550 2500 2500 2517	2700 2650 2650 2667	2625 2575 2575 2592	2700 2600 2600 2633	2700 2600 2600 2633	2700 2600 2600 2633		

- 93 -

表-5.1.2 (つづき)

Table 5.1.2 (Continued)

区分記号	荷重条件	試験回数		$\Delta \delta_{y-Q}$			$\Delta \delta_{y-P}$
Mark	Loading condition	Number of test	А	В	М	А	В
剛	· 風 上 (W)	70 71 72 M	2100 2025 2050 2058	2150 2100 2100 2117	2125 2063 2075 2088	2125 2025 2075 2078	2200 2150 2200 2183
	風 下 (L)	73 74 75 M	2100 2000 1975 2025	2100 2025 2050 2058	2100 2013 2013 2042	2050 1925 1925 1967	2050 2000 2000 2017
竹 RW	同 時 (C)	67 68 69 M	4350 4350 4250 4317	4300 4300 4400 4333	4325 4325 4325 4325	4300 4300 4200 4267	4300 4300 4300 4300
剛	風 上 (W)	79 80 81 M	2025 1975 2000 2000	2050 2000 1950 2000	2038 1988 1975 2000	2025 2025 2025 2025	1950 2025 2025 2000
点(天井	風 下 (L)	82 83 84 M	1875 1900 1900 1892	1950 1925 1925 1933	1913 1913 1913 1913 1913	1900 1850 1850 1867	1900 1875 1850 1875
竹 RC	同 時 (C)	76 77 78 M	4250 4150 4100 4167	4100 4300 4000 4133	4175 4250 4050 4150	4150 4100 4100 4117	3900 4050 4100 4017
剛	風 上 (W)	88 89 90 M	2150 2100 2075 2108	2125 2050 2150 2108	2138 2075 2113 2108	2100 2100 2075 2092	2125 2100 2100 2108
即点(屋根)	風 下 (L)	91 92 93 M	2050 1950 1950 1983	2000 2050 2050 2033	2025 2000 2000 2008	1950 1900 1925 1925	2000 1925 1950 1958
竹 RR	同 時 (C)	85 86 87 M	4350 4200 4250 4267	4350 4150 4200 4233	4350 4175 4225 4250	4250 4050 4150 4150	4300 4250 4200 4250
剛節	風 上 (W)	97 98 99 M	280 298 296 291	291 300 299 297	286 299 298 294	311 323 321 318	334 346 346 342
点 (完成 1	風 下 (L)	100 101 102 M	344 324 321 330	349 350 347 349	347 337 334 339	301 291 288 293	317 303 300 307
2 RG	同 時 (C)	94 95 96 M	700 643 634 659	746 675 667 696	723 659 651 678	659 635 633 642	747 668 659 691

- 94 -

ł

ŧ

		$\Delta \delta_{y} - J$			$\Delta \delta_{y-H}$	
М	А	В	М	A	В	М
2163 2088 2138 2131	1075 1025 1050 1050	1175 1125 1125 1125 1142	1125 1075 1088 1096	1150 1100 1125 1125	1150 1100 1100 1117	1150 1100 1113 1121
2050	1250	1175	1213	1100	11C0	1100
1963	1050	1150	1100	1025	1050	1038
1963	1050	1125	1088	1025	1000	1013
1992	1117	1150	1133	1050	1050	1050
4300	2150	2350	2250	2350	2400	2375
4300	2250	2300	2275	2300	2300	2300
4250	2150	2300	2225	2250	2300	2275
4283	2183	2317	2250	2300	2333	2617
1988	1025	1075	1050	1100	1050	1075
2025	1025	1075	1050	1075	1050	1063
2025	1050	1025	1038	1075	1050	1063
2013	1033	1058	1046	1083	1050	1067
1900	1050	1100	1075	1000	975	988
1863	1050	1050	1050	975	975	975
1850	1000	1100	1050	975	950	963
1871	1033	1083	1058	983	967	975
4025	2200	2300	2250	2300	2200	2250
4075	2150	2400	2275	2250	2100	2175
4100	2150	2300	2225	2200	2100	2150
4067	2167	2333	2250	2250	2133	2192
2113	1100	1150	1125	1100	1100	1100
2100	1075	1150	1113	1100	1100	1100
2088	1050	1250	1150	1075	1075	1075
2100	1075	1183	1129	1092	1092	1092
1975	1050	1175	1113	1025	1025	1025
1913	1050	1125	1088	1000	1000	1000
1938	1025	1050	1038	975	975	975
1942	1042	1117	1079	1000	1000	1000
4275	2200	2300	2250	2250	2200	2225
4150	2100	2150	2125	2200	2150	2185
4175	2150	2050	2100	2200	2150	2175
4200	2150	2167	2158	2217	2167	2192
323	187	184	186	216	200	208
335	191	189	190	220	203	212
334	191	184	188	220	202	211
330	188	186	187	219	202	210
309	248	238	243	194	185	190
297	266	232	249	186	177	182
294	267	232	250	185	176	181
300	260	234	247	188	179	184
703	432	432	432	486	434	460
652	490	439	465	479	393	436
646	475	433	454	490	387	439
667	466	435	450	485	405	445

区分記号	荷	行重条件	試験回数	X		$\Delta \delta_{x-S}$		$\Delta \delta_{x-} U'$		
Mark	L co	oading ndition	Number of	test	А	В	М	Α	В	М
剛節点アーチ	風	上 (W)	43, 44, 45,	116	203	193	198	-38	-65	-52
(床梁二点剛節) RB。	風同	下(L) 時(C)	46, 47, 48,	117	85 281	89 264	87 273	-23 -51	-25 -82	
		+ (W)	52 52 54	112	107	170	170	- 36	- 50	_ 49
両即点 / ー ゲ 床 付	風風	王(W) 下(L)	52, 53, 54,	113	107 76	80	78	-23	-39 -28	-40 -26
RF	同	時(C)	49, 50, 51,	112	271	245	258	-60	-84	-72
剛節点アーチ	風	上 (W)	61, 62, 63,	110	109	99	104	-35	-39	-37
リブ付	風	下 (L)	64, 65, 66,	111	121	112	117	- 23	-37	-30
RL	同	時(C)	58, 59, 60,	109	218	199	209	-59	-73	-66
剛節点アーチ 壁 付 <i>RW</i>	風風同	上(W) 下(L) 時(C)	70, 71, 72 73, 74, 75 67, 68, 69							
剛節点アーチ	風	上 (W)	79, 80, 81							
天 井 付 <i>RC</i>	風同	下(L) 時(C)	82, 83, 84							-
	儞	+ (W)	88, 89, 90,	107	87	93	90	- 27	-40	-34
屋根付	風	工(II) 下(L)	91, 92, 93,	108	96	102	99	- 26	- 33	-30
RR	同	時(C)	85, 86, 87,	106	180	186	183	-60	-73	-67
剛節点アーチ	風	上 (W)	97, 98, 99,	104	44	23	34	5	-3	1
完成(1/2)	風	下 (L)	100,101,102,	105	50	28	39	8	0	4
RG	司	.時(C)	94, 95, 96,	103	100	56	78	15	-7	4

Table 5.1.3 Observed deflection at measuring points of floor under

表-5.1.3 各種組立条件における床部

良好な適合を示していた。

つぎに、ボルト接合条件の場合をみると、脚部を1ヵ所だけチャンネルに固定したさいの実測値(RB_1) は、三鉸節条件の実測値とほぼ同じか、あるいはむしろ大きな結果を示し、平均的には三鉸節条件として 計算値の81%となり、剛節固定端とみなすわけにはいかない。しかし、脚部を2ヵ所固定すると変形量は いちじるしく減少し、その実測値(RB_2)は三鉸節条件での計算値のわずか24%程度となる。 同様の比率 をA型建物についてみれば約40%程度であった。いま、この骨組みを両脚固定ラーメンとみなして各点の 計算撓み(Hr)を求め、 RB_2 、 H_c 、Hrの3者の相互関係を示すと表-5.3のごとくなる。 両脚固定の場 合の計算値は実測値(RB_2)の約65%となり、実測値の方が約1.5倍ほど大きいことがわかる。A型建物 では約47%であった。また、両脚固定の場合の計算値は三鉸節条件での計算値の約14%、換言すればその 計算曲げ剛性において、両脚固定の場合は三鉸節条件の約7倍となっている。A型建物でのこの値は約19 %であった。なお、今後とくに断わらないかぎり、ここでいうボルト接合条件とは脚部を2ヵ所固定した 場合をさすことにする。

さらにここで、三鉸節条件、ボルト接合条件での実測撓みを基準として、各種パネルをとりつけたさいの実測値相互間の関係を示すと表-5.4のごとくなる。この表と前述の表-5.2から、各種パネルの装着が建

の 各 点 の 撓 み (Δδ:×10⁻³cm/100kg)

						_					
	$\Delta \delta_{x} - U$			$\Delta \delta_{x-}V$			$\delta \delta_{x-} V'$			$\Delta \delta_{x-}T$	
А	В	M	А	В	М	A	В	М	A	В	М
26	24	25	-14	-11	-13	31	34	33	- 72	- 72	- 72
13	12	13	-20	-21	-21	68	77	73	-138	-148	-143
40	36	38	- 36	-35	-36	98	109	104	-212	- 227	- 220
18	20	19	- 8	- 5	- 7	23	24	24	- 75	- 68	- 72
13	12	13	-21	-17	-19	58	64	61	-138		-142
30	30	30	-26	-17	-22	85	91	88	-213	- 224	-219
81	79	80	-26	- 29	-28	31	34	33	-118	- 97	-106
25	22	24	-78	97	-88	48	49	49	-104	- 93	- 99
114	108	111	-108	-126	-117	75	77	76	-212	-187	-200
58	68	63	- 22	- 20	-21						
1	2	2	-65	- 75	-70						
63	82	73	-91	-101	- 96						
55	66	60	-22	-21	- 22						
1	1	1	-67	-70	-69						
64	76	70	-97	-100	- 98						
88	86	87	-36	-32	-34	41	37	39	-91	-93	-92
24	18	21	- 88	- 90	- 89	44	37	41	- 80	-81	-81
113	109	111	-124	-120	-122	91	72	82	-165	-174	-170
-32	-10	-21	48	42	45	0	6	3	-47	-27	-37
-48	-35	-42	29	19	24	2	9	6	-42	-19	-31
-81	-42	-62	77	64	71	4	17	11	-89	-50	-70

various conditions of assembly (unit $: \times 10^{-3}$ cm/100kg)

物剛性に与える影響を検討できるので、組立ての順序にしたがって述べてみることにする。

i) 床 パ ネ ル (RF)

さきに、ボルト接合条件における集成材骨組みの実測撓みは、三鉸節条件での計算値のわずか24%程度 にすぎないことを述べたが、三鉸節条件での実測撓みに対しては約32%、すなわち、実測剛性では約3倍 ほど大きくなっている。いま、この骨組みの脚部に床パネル3枚ずつとりつけても、その実測撓みは骨組 みだけの場合と同じで、三鉸節での計算値の約24%、実測値の約32%となり、当然のことながら建物剛性 の変化は認められない。

ii) リブ付パネル (*RL*)

つぎに、リブ付パネルをとりつけても、水平方向の撓みに対してはほとんど効果がなく、三鉸節での計 算値の約21%、実測値の29%程度になっている。しかし、表-5.1の最後の欄に参考として付してある頂点 Dの垂直撓み δ_x の値をみると、この方向に対してはかなりの拘束効果があるようであるが、その撓みは 水平撓みにくらべるといちじるしく小さく、かつ数値的にも必ずしも安定していない。

iii) 壁 パ ネ ル (RW)

その後、わん曲登梁のわん曲部に曲面壁パネル、さらにその上に図版-5.9に示すように壁パネル、窓枠

— 97 —

林業試験場研究報告 第158号

撓 み	水平荷重	計算值		実	測 亻	直 Ob	served va	alue	
Deflection	Horizontal	3 鉸節	3 鉸節			ボ	ルト	接	合
10 - 3cm	loading		2連	床梁1点	床梁2点	床 付	リブ付	壁付	天井付
		H_C	H_0	RB_1			RL	RW	RC
	風 上(W)	11990	10292	11589	2888	2929	2483	2129	2025
$\Delta \delta_n D$	風 下(L)	11990	8383	8111	2475	2446	2442	2042	1914
	同 時(C)	23980	15656	18667	5892	5750	4975	4358	4192
	Mean								
	風 上(W)	10280	9200	6467	3442	3292	2129	1838	1763
	風 下(L)	9030	6700	6378	1371	1413	2042	1713	1625
<i>∆oy</i> C	同 時(C)	19310	13720	15515	5175	4825	4142	3700	3608
	Mean								
	風 上(W)	9030	7400	8800	1506	1579	2054	1708	1629
18 F	風 下(L)	10280	7092	7133	2829	2904	2129	1700	1575
20 y L	同 時(C)	19310	11678	15316	4958	4975	4225	3575	3408
	Mean								
r	風 上(W)	8610	7867	9467	2908	3025	1804	1467	1358
48 M	風 下(L)	7390	5450	5834	1098	1217	1667	1304	1150
210 y 141	同 時(C)	16000	11600	13889	4300	4392	3583	2892	2392
	Mean								
	風 上 (W)	7390	6250	6334	1155	1163	1604	1413	1358
18 N	風 下(L)	8610	6125	6489	2268	2267	1704	1488	1383
20 y 1	同 時(C)	16000	9989	12134	3875	3783	3333	2992	2892
Mean									
Me	Mean								
C.V.	±1%								

表-5.2 三鉸節条件としての水平撓みの計

Table 5.2 Comparison of calculated value as three hinged frame

注) $\Delta \delta = 荷重 100 \text{ kg}$ 当たりの携み Deflection per 100 kg loads. $H_c = \text{Calculated value as three hinged frame.}$

— 98 *—*

算値と各種組立条件における実測値との比較

実 測 値/計 算 値 Ratio $H_{\underline{0}}$ $RB_{\underline{1}}$ RB_2 RF RL RW RC RG RR 屋根付 完成1/2 H_C H_{C} Hc H_{C} H_{c} H_C H_C H_C H_C RR RG 2017 299 0.858 0.967 0.178 0.241 0.244 0.207 0.169 0.168 0.025 1988 316 0.699 0.676 0.206 0.204 0.204 0.170 0.160 0.166 0.026 4283 657 0.653 0.778 0.246 0.240 0.207 0.182 0.175 0.179 0.027 0.737 0.807 0.231 0.229 0.206 0.177 0.168 0.171 0.026 1813 251 0.895 0.629 0.335 0.320 0.207 0.179 0.171 0.176 0.024 0.226 1646 242 0.742 0.706 0.152 0.156 0.190 0.180 0.182 0.027 3592 509 0.186 0.026 0.711 0.803 0.268 0.250 0.214 0.192 0.187 0.783 0.713 0.252 0.242 0.216 0.187 0.183 0.181 0.026 1654 0.819 0.975 0.227 0.189 0.180 0.183 0.024 221 0.167 0.175 1617 269 0.690 0.694 0.275 0.282 0.207 0.165 0.153 0.157 0.026 3442 0.793 524 0.605 0.257 0.258 0.219 0.185 0.176 0.178 0.027 0.705 0.821 0.170 0.233 0.238 0.218 0.180 0.173 0.026 1500 0.914 0.338 234 1.100 0.351 0.210 0.170 0.158 0.174 0.027 1300 0.737 0.789 0.226 0.176 0.156 0.176 0.025 182 0.149 0.165 2850 434 0.725 0.868 0.269 0.275 0.224 0.181 0.150 0.178 0.027 0.792 0.919 0.252 0.264 0.220 0.176 0.155 0.176 0.026 1450 183 0.846 0.857 0.156 0.157 0.217 0.191 0.184 0.196 0.025 1442 293 0.711 0.754 0.263 0.263 0.198 0.173 0.161 0.167 0.034 2982 489 0.624 0.758 0.242 0.236 0.208 0.187 0.181 0.186 0.031 0.790 0.208 0.175 0.183 0.030 0.727 0.220 0.219 0.184 0.749 0.810 0.238 0.238 0.214 0.181 0,170 0.177 0.027 4 8 5 3 2 5 2 6 6

condition and observed values in various conditions of assembly.

林業試験場研究報告 第158号

	1	1	1 =1 4	今 /店			
撓 み	荷重条件	実測値	Calculate	≠		Ratio	
Deflection	Loading condition	value <i>RB</i> ₂	3 鉸 節 <i>Hc</i>	剛 節 <i>Hr</i>	$\frac{RB_2}{H_C}$	$\frac{Hr}{RB_2}$	$\frac{Hr}{H_C}$
	風 上 (W)	2888	11990	1860	0.241	0.644	0.155
	風 下(L)	2475	11990	1860	0.206	0.752	0.155
$\Delta o_y D$	同 時(C)	5892	23980	3720	0.246	0.631	0.155
	Mean				0.231	0.676	0.155
	風 上(W)		11660	1531			0.131
-	風 下(L)		10820	1493			0.138
20yK	同 時(C)		22480	3024			0.135
	Mean						0.135
	風 上(W)		10820	1493			0.138
45.7	風 下(L)	I	11660	1531		•	0.131
Δõ _y L	同 時(C)		22480	3024			0.135
	Mean				-		0.135
	風 上(W)	3442	10280	1501	0.335	0.436	0.146
42.0	風 下(L)	1371	9030	1251	0.152	0.912	0.139
$\Delta \delta_y C$	同 時(C)	5175	19310	2752	0.268	0.532	0.143
	Mean				0.252	0.627	0.143
	風 上(W)	1506	9030	1251	0.167	0.831	0.139
1	風 下(L)	2829	10280	1501	0.275	0.531	0.146
· Δό _y Ε	同 時(C)	4956	19310	2752	0.257	0.555	0.143
	Mean				0.233	0.639	0.143
	風 上(W)	2908	8610	1195	0.338	0.411	0.139
	風 下(L)	1098	7390	1090	0.149	0.993	0.147
$\Delta \delta_y M$	同 時(C)	4300	16000	2285	0.269	0.539	0.143
	Mean				0.252	0.645	0.143
	風 上(W)	1155	7390	1090	0.156	0.944	0.147
	風 下(L)	2268	8610	1195	0.263	0.527	0.139
$\Delta \delta_y N$	同 時(C)	3875	16000	2285	0.242	0.590	0.143
	Mean				0.220	0.687	0.143
N	Iean				0.238	0.655	0.142

表-5.3 接合条件による水平撓みの計算値の差異と実測値との比較 Table 5.3 Difference between calculated values under two joining conditions and comparison of those with observed values.

注) *Δδ*=荷重 100 kg 当たりの撓み (×10⁻³cm) $H_C =$ Three hinged frame.

Deflection per 100kg load ($\times 10^{-3} \text{cm}).$

Hr=Rigid frame.

 RB_2 = Observed value in RB_2 test condition.

撓 み	水	平荷重				5	実 測	値	相互	関	係」	七 Rai	io			
Deflection	H l	orizontal oading	$\frac{RB_1}{H_0}$	$\frac{RB_2}{H_0}$	$\frac{RF}{H_0}$	$\frac{RL}{H_0}$	$\frac{RW}{H_0}$	$\frac{RC}{H_0}$	$\frac{RR}{H_0}$	$\frac{RG}{H_0}$	$\frac{RF}{RB_2}$	$\frac{RL}{RB_2}$	$\frac{RW}{RB_2}$	$\frac{RC}{RB_2}$	$\frac{RR}{RB_2}$	$\frac{RG}{RB_2}$
	風	上 (W)	1.126	0.281	0.285	0.241	0.207	0.197	0.196	0.029	1.014	0.860	0.737	0.701	0.698	0.104
$\Delta \delta_u D$	風	下(L)	0.968	0.295	0.292	0.291	0.244	0.228	0.237	0.038	0.988	0.987	0.825	0.773	0.803	0.128
y	同	時(C)	1.192	0.376	0.367	0.318	0.278	0.268	0.274	0.042	0.976	0.844	0.740	0.711	0.727	0.112
		Mean	1.095	0.317	0.315	0.283	0.243	0.231	0.236	0.036	0.993	0.897	0.767	0.728	0.743	0.115
	風	上 (W)	0.703	0.374	0.358	0.231	0.200	0.192	0.197	0.027	0.956	0.619	0.534	0.512	0.527	0.073
$\Delta \delta_{\nu} C$	風	下 (L)	0.952	0.205	0.211	0.305	0.256	0.243	0.246	0.036	1.031	1.489	1.249	1.185	1.201	0.177
<i>y</i> -	同	時(C)	1.131	0.377	0.352	0.302	0.270	0.263	0.262	0.037	0.932	0.800	0.715	0.697	0.694	0.098
		Mean	0.929	0.319	0.307	0.279	0.242	0.233	0.235	0.033	0.973	0.969	0.833	0.798	0.807	0.116
	風	上 (W)	1.189	0.204	0.213	0,278	0.231	0.220	0,224	0.030	1.048	1.364	1.134	1.082	1.098	0.147
$\Delta \delta_{u}E$	風	下 (L)	1.006	0.399	0.409	0.300	0.240	0.222	0.228	0.038	1.027	0.753	0.601	0.557	0.572	0.095
5	同	時(C)	1.312	0.425	0,426	0.362	0.306	0.292	0.295	0.045	1.003	0.852	0.721	0.687	0.694	0.106
		Mean	1.169	0.343	0.349	0.313	0.259	0.245	0,249	0.038	1.026	0.990	0.819	0.775	0.788	0.116
	風	上 (W)	1.203	0.370	0.385	0.229	0.186	0.173	0.191	0.030	1.040	0.620	0.504	0.467	0.516	0.080
$\Delta \delta_{y} M$	風	下(L)	1.070	0.201	0.223	0.306	0.239	0.211	0.239	0.033	1.116	1.529	1,196	1.055	1.193	0.167
5	同	時(C)	1.197	0.371	0.379	0.309	0.249	0.206	0.246	0.037	1.021	0.833	0,673	0,556	0.663	0.101
		Mean	1.157	0.314	0.329	0.281	0.225	0.197	0.225	0.033	1.059	0.994	0.791	0.693	0.791	0.116
	風	上 (W)	1.013	0.185	0.186	0.257	0.226	0.217	0.232	0.029	1.007	1,389	1.223	1.176	1.255	0.158
$\Delta \delta_{u} N$	風	下 (L)	1.059	0.370	0.370	0.278	0.243	0.226	0.235	0.048	1.000	0.751	0,656	0,610	0.636	0.129
U	同	時(C)	1.215	0.388	0.379	0.334	0.300	0.290	0.299	0.049	0.976	0.860	0.772	0.746	0.770	0.126
		Mean	1.096	0.314	0.312	0.290	0.256	0.244	0.255	0.042	0.994	1.000	0.884	0.844	0.887	0.138
Ν	Aean		1.089	0.321	0.322	0.289	0.245	0.230	0.240	0.037	1.009	0.970	0.819	0.768	0.803	0.120
C.V	7. ±⊿	%	8	3	5	4	5	8	4	9	2	4	5	7	6	7

表-5.4 各種組立条件における実測値相互間の比較

Table-5.4 Comparison between observed values under various conditions of assembly.

木造組立家屋に関する研究 第3報(沢田・山井・高見・近藤・杉山)

- 101 -

パネルをとりつけると、その実測撓みは三鉸節での計算値の約18%、実測値の約25%となっている。すな わち実測剛性では三鉸節条件の場合の約4倍とわずかながら上昇しているが、これは曲面壁パネルがわん 曲部の補強的役割りを果たしているためかもしれない。A型建物の場合は骨組み、パネル、接合金具など の条件が異なるので、単純に比較することはできないが、壁パネルをとりつけたことによる剛性増加は全 く期待しえなかった。

iv) 天井パネル (RC)

つぎに, 天井パネルの長手方向をけた行方向にして, 通直登梁上に4枚ずつとりつけた場合の実測撓みは, 三錠節での計算値の約17%, 実測値の約23%で, このパネルをとりつけたことによる剛性の増加はほとんど認められない。

v) 屋根パネル (RR)

さらに、その天井パネルと直交する方向に屋根パネルを7枚ずつ(1枚は端部パネル)とりつけても、 その実測撓みは三鉸節での計算値の約18%、実測値の約24%となっている。すなわち、壁パネルをとりつ けた場合や、さらに天井パネルをとりつけた場合と同様の結果が得られ、建物剛性にはほとんど変化がみ られない。A型建物の場合も同様の傾向を示し、屋根パネルによる剛性増加はほとんどあらわれていなか った。このことの多くは集成材骨組みとパネルの接合条件に起因すると考えられるが、ここで用いられて いるような接合具によっては剛性効果を期待することが無理のようである。

vi) 妻パネルおよび間仕切パネル (RG)

ここでは、建物半分を組立て実験対象としているので、片側には実際の場合と同様に妻パネルをとりつけ、反対側には間仕切りパネルをとりつけたわけであるが、この場合の実測撓みはいちじるしく低減し、 三鉸節での計算値のわずか3%、実測値の約4%程度となっている。すなわち、この場合の建物剛性は三

区分	記号		$\Delta \delta_{y-P}$			$\Delta \delta_{y-Q}$		$\Delta \delta_{y-H}$		
	Mark	風 上 (W)	風 下 (L)	同 時 (C)	風 上 (W)	風 下 (L)	同 時 (C)	風 上 (W)	風 下 (L)	
3 鉸	節 (計算値) H _C	12080	11740	23820	11740	12080	23820			
	リブ付 RL	2492	2367	4875	2433	2404	4867	1338	1254	
剛節点	壁 付 RW	2131	1992	4283	2088	2042	4325	1121	1050	
(実測値)	天井付 RC	2013	1871	4067	2000	1913	4150	1067	975	
Observed	屋根付 RR	2100	1942	4200	2108	2008	4250	1092	1000	
deflection	完成(1/2) RG	330	300	667	294	339	678	210	184	
-	RL/H_C	0.206	0.202	0.205	0.207	0.199	0.204			
実測値	RW/H_C	0.176	0.170	0.180	0.178	0.169	0.182			
計算值	RC/H_C	0.167	0.159	0.171	0.170	0.158	0.174			
D	RR/H_C	0.174	0.165	0.177	0.180	0.166	0.178		1	
Ratio	RG/H_C	0.027	0.026	0.028	0.025	0.028	0.028		\	

表-5.5 水平剛重によるリブ付パネルの実測撓みと三鉸節条件での計算撓みの比較 Table 5.5 Summary of observed deflections of panel member with rib and comparison of

注) H_c : Calculated value as three hinged frame.

 $\Delta \delta_y$: Deflection per 100kg load (×10⁻³cm).

-102-

鉸節条件での骨組み剛性の約25倍に増大している。このことはきわめて注目すべきことで、妻パネルや間 仕切りパネルがこの建物の筋かい効果を間接的に果たしているとみて差し支えないようである。いま、最 終剛性を基準にとれば、ボルト接合の骨組み剛性負担率は <u>RG/Hc</u> から約11%となり、パネルの負担率 は約89%となる。また、壁パネルのとりつけをふくめた場合の剛性負担率は <u>RG/Hc</u> から約15%とな り、天井および屋根パネルの拘束効果はほとんどないので、妻および間仕切りパネルの負担率は約85%と いうことになる。A型では骨組みの剛性負担率は大約35%であり、壁パネルなどの拘束効果はほとんどな いので、妻パネルの負担率は約65%ということになる。

また、表-5.4に示すように、各種パネルの装着時の実測撓みを、ボルト接合条件における骨組みの実測 撓み(RB₂)を基準に比較すれば、床パネルやリブ付パネルをとりつけてもほとんど変化なく、壁パネル 装着時で約82%に低減している。その後、天井パネルや屋根パネルをとりつけてもあまり影響がみられな いが、妻および間仕切りパネルのとりつけを完了すると急に12%程度まで減少してくる。これに対し、A 型建物では壁パネル装着で約104%、妻パネルとりつけ完了時で約31%となっていた。さらにこれらの諸 関係を風上下同時荷重における100kg あたりの実測水平撓みでみると、頂点では三鉸節条件の場合156.6 mm(H_0)、ボルト接合条件に変えた場合58.9 mm(RB_2)、これに壁パネルをとりつけた場合43.6 mm (RR)、屋根パネルをとりつけた場合42.8 mm(PG)、妻および間仕切りパネル装着時でわずか6.6 mm (RG)となる。また、高さ1.78mにおける風上下両荷重点の平均撓みは107.9mm(H_0)、40.9mm(RB_2)、 29.4 mm(RW)、29.2 mm(RR)、4.6 mm(RG) と低減している。同様の関係をA型建物についてみ ると、頂点では三鉸節条件のとき24.2 mm(\overline{H})、ボルト接合条件に変えたとき9.3 mm(R3P)、壁パ ネルをとりつけたとき9.3 mm(RWP)、屋根パネルをとりつけたとき8.2 mm(RRP)、妻とりつけ完 了時で2.6 mm(RFP)となる。高さ1.88 mにおける風上下両荷重点の平均撓みは19.8 mm(\overline{H})、

(分解試験)

those with calculated value.

- · · ·		$\Delta \delta_{y} - J$									
同時	風上	風下	同時								
(C)	(W)	(L)	(C)								
<u>.</u>											
2633	1288	1313	2592								
2617	1213	1133	2250								
2192	1046	1058	2250								
2192	1129	1079	2158								
445	187	247	450								
		:									

8.6 mm (*R3P*), 8.5 mm (*RWP*), 7.8 mm (*RRP*), 2.5 mm (*RG*) と低減している。なお,両荷重点の平均水平撓みの値を 用いて,妻および間仕切りパネル装着時の壁面の角度変化を計 算すると 100 kg あたり約9分となるが,A型建物では約4分 となる。

このほか、リブ付パネルの挙動をみるため、パネルのわん曲 部と通直登梁の接する点 $P(\textbf{風} \bot \textbf{@}), Q(\textbf{風} T \textbf{@}), パネルの$ 直立部中央の <math>H, J点の水平方向の撓みを表-5.5 に示す。当 然のことながら、P, Q点の実測撓みと三鉸節としての計算撓 みの関係は、前述の各測点の場合とほぼ同様の結果となってい る。また、床面の撓みをみるため、脚部の外側接合点 A, Gより 25 cm はなれた $S(\textbf{風} \bot \textbf{@}), T(\textbf{風} T \textbf{@})$ 点、床面上に 設けられ、脚部接合用両ボルト間の中央にあたる U', V'点、 床パネルとリブ付パネルの接する U, V点の垂直撓みを表-5.6 に示す。妻および間仕切りパネルをとりつけないうちは、風上 側床面の U'点は最初の位置より下がり、接合点より端部に ある S, U点ははね上がるが、風下側床面では反対に V'点

X	分記号					$\Delta \delta_{x-S}$			$\Delta \delta_{x-}U'$		
	Ma	rk			風 上 (W)	風 下 (L)	同時 (C)	風 上 (W)	風 下 (L)	同 時 (C)	風 (W)
3 鉸	節	(計算	值)	H_C	1360	1130	2490				
	床	梁二点	剛節	RB_2	198	87	273	-52	-24	-67	25
	床		付	RF	178	78	258	-48	-26	-72	19
剛 節 点	y	ブ	付	RL	104	117	209	-37	-30	-66	80
(実測値)	壁		付	RW							63
Observed	天	井	付	RC							60
deflection	屋	根	付	RR	90	99	183	-34	-30	-67	87
	完	成(1/2)	RG	34	39	78	. 1	4	4	-21
		$RB_2/$	H_C		0.146	0.077	0.110				
実測値		RF/1	H_C		0.131	0.069	0.104				
計算値		RL/I	H_C		0.076	0.104	0.084				
Ratio		RR/I	H_C		0.066	0.088	0.073				
		RG/	H_C		0.025	0.035	0.031				

表-5.6 水平荷重による床部の実測撓みと

Table 5.6 Summary of observed deflections of floor

注) H_c : Calculated value as three hinged frame.

 $\Delta \delta_x$: Deflection per 100 kg (×10⁻³cm).

がはね上がり, V, T 点は下がる。ところが, 妻および間仕切りパネルをとりつけると, 各点の撓みが減 少するばかりでなく, 風上側の U 点が下がり, 風下側の V 点ははね上がる傾向を示す。 しかし, ここ では参考程度にとどめ, 詳細な検討は後日の機会にゆずることにする。

ここで、上述の分解試験の結果を概括的に述べれば、y方向の水平荷重による集成材骨組みのみかけの 曲げ剛性は、その接合方法を三鉸節条件からボルト条件に変えることにより約3倍ほど増大するが、ボル ト接合した骨組みに床パネルやリブパネルをとりつけてもほとんど変化がみられない。その後、壁パネル をとりつけるとわずかに増加し約4倍程度となるが、天井パネルや屋根パネルをとりつけてもほとんど効 果が期待できない。しかし、さらに妻および間仕切りパネルをとりつけると急激に剛性が増大し、三鉸節 条件での骨組み剛性の約25倍程度となる。これは両期固定としての計算骨組み剛性が、三鉸節での計算骨 組み剛性の約7倍となっているのにくらべいちじるしく大きい。

5.3 総合試験 この試験は実際の場合と同じように建物を完成させたのち、開口部をもたない構造物とみなして、速度圧 $q=120 \text{ kg/m}^2$ の設計用風圧荷重に相当する荷重を壁面(y 方向) および屋根面 (x 方向)に作用させた場合と、比重 0.3、深さ 1 m の積雪荷重に相当する砂袋を積載した場合とに 2 大別される。なお、設計用風圧荷重を表-5.7に、試験荷重を図-5.12に示すが、屋根面風下荷重の場合は Cを 0.1とみて荷重を加えたので、設計用風圧荷重より約40%程度大きくなっている。その他の場合につ

木造組立家屋に関する研究 第3報(沢田・山井・高見・近藤・杉山)

三鉸節条件での計算撓みの比較(分解試験)

and comparison of those with calculated value.

$\Delta \delta_{x-}U$		$\Delta \delta_{x-}V$				$\Delta \delta_{x} - V'$			$\Delta \delta_{x-T}$		
風下	同 時 (C)	風 上 (W)	風下	同時	風 上 (W)	風下	同 時 (C)	風 上 (W)	風下(1.)	同 時 (C)	
							_(0)	-1130	-1360	-2490	
13	38	-13	-21	- 36	33	73	104	- 72	-143	- 220	
13	30	- 7	- 19	- 22	24	61	88	- 72	-142	-219	
24	111	- 28	- 88	-117	33	49	76	-106	- 99	- 200	
2	73	-21	-70	- 96							
1	70	-22	- 69	- 98							
21	111	-34	-89	-122	39	41	82	- 92	- 81	-170	
-42	-62	45	24	71	3	6	11	- 37	- 31	- 70	
								0.064	0.105	0.088	
								0.064	0.104	0.088	
								0.094	0.073	0.080	
								0.081	0.060	0.068	
								0.033	0.023	0.028	

表-5.7 設計用風圧荷重 Table 5.7 Design wind load.

						設計荷重 I	Design load
風圧	力作用面	速度圧	風力係数	作用風圧力	作用面積	全体	単位骨組
Plain of v	vind load applied	q	С	w	A	F	F/4
		(kg/m^2)		(kg/m)	(m ²)	(kg)	(kg)
	風 上	120	0.07	8.4	21.0	267	67
屋根	Wind ward	180	0.02	12.6	51.0	400	100
Roof	風 下	120	0.5	60	31.8	1908	477
	Lee ward	180	0.5	90	51.0	2862	716
	風 上	120	0.8	96	17 2	1651	413
壁	Wind ward	180	0.8	144	17.2	2477	619
Wall	風 下	120	0.4	48	17.2	826	207
	Lee ward	180	0.4	72	17.2	1238	310

注) q =Velocity pressure.

C = Wind pressure coefficient. w = Uniform load. A: Area of wind load applied.

F = Total load on area of loading.

F/4 = Load applied to each laminated frame.

-105 -

いては設計用風圧荷重とほぼ同等の荷 重を加えている。また,屋根全面に対 する積雪荷重の場合は 300 kg/m² を 設計荷重としたが,負荷の途中約 150 kg/m² の測定が 終了したときに,図 版-5.10 に示すように通直登梁の1本 がその中央部付近でスカーフ部分の剝 離をおこしたので試験を中止し,その 他はさきに述べた分解試験の骨組みや パネルが関与する部位の屋根面のみに 約 300 kg/m² に相当する荷重を加え た。

3.5.1 試験方法 この試験の方法は第2報で述べたA型宿舍の場合とほぼ同様であるが、そのすす め方は表-1.1の試験系列に示すように、風圧荷重試験としては3種類、積雪荷重試験としては4種類があ る。すなわち、風圧に対しては、水平荷重による壁面試験(RFI)、突上げ荷重による屋根面試験(RFI)、 壁面および屋根面試験の組合せ(RFII)の順序におこなったが、どの場合も風上側単独、風下側単独、 風上下側同時のそれぞれにつき、3回ずつ繰返して荷重を加えている。また、積雪については、さきに述 べたごとく、スカーフ 剥離が生ずるまで、屋根全面に対し、6,660 kg(\pm 150 kg/m²)を負荷した場合 (RSI)、この建物の中央断面から妻側までの屋根半面に 6,060 kg(\pm 300 kg/m²)を負荷した場合(RSII)、 さらに、この屋根半面のうちの風上側だけ、すなわち屋根全面の1/4 に 3,060 kg(\pm 300 kg/m²)を負荷した場合 (RSI)、同様にその風下側のみに 3,060 kg(\pm 300 kg/m²)を負荷した場合(RSIV)の4種 類をおこなった。

i) 建物の条件 前述の分解試験の場合は建物半分を対象とし、天蓋もついていなかったが、この場合はすべて完成した状態の建物についておこなった。なお、分解試験では建物は鋼製チャンネルの上に組み立てられておったが、この場合は図-5.1および図版-5.1に示したように脚部は地杭にボルト接合されている。また、部材相互の接合はすでに接合概要で述べたとおりである。

ii) 荷重の加え方 風圧荷重試験の場合はすでに第2報で述べた方法と同様の方式をとり、壁面荷重 (y 方向)の場合は図-5.13のaに示すように壁パネルの窓枠周辺に木製井桁状荷重枠(約1m²)をとり つけ、これを荷重梁で連結し、荷重タワーの滑車を介して張られたワイヤーロープにより引張力を作用さ せた。その場合の荷重計はA型宿舍のときと同じく、2基のテンションブロックにとりつけたループダイ ナモメーターである。このループダイナモメーターは風上用 2,000 kg、風下用 1,000 kg の能力であり、 試験前に検定表を作り、これによって作用力を定めた。屋根面突上げ荷重(x 方向)では図-5.13のbの ように木製井桁状荷重枠を屋根パネルにとりつけ、ループダイナモメーターにより突上げ荷重を加えた。 この場合は風上側に1,000kg、風下側に2,000 kg 能力のダイナモメーターを用いた。積雪荷重では図-5. 13の c および 図版-5.11 に示すごとく、1袋 20 kg の砂袋を用い、屋根の両面にそれぞれ 11×3=33 の 枡ができるように丸太で枠組みをし、所定の荷重に達するまで毎回各枡に同数の袋が配置されるような積 載方式を採用した。なお、枠組みの重量は片面 30 kg とした。

図-5.13 総合試験における荷重の加え方 Fig. 5.13 Manner of loading for complete assemblies test.

(a) 水平荷重 (y 方向) Horizontal loads (y-direction) Vertical loads (x-direction)

- (b) 垂直荷重(*x* 方向)
- (c) 積雪荷重(x 方向) Snow loads (x-direction)

iii) 変形量の測定方法 この建物での変形量の測定は、図-5.14に示した各測点についておこなわれ た。すなわち、この建物の横断面を集成材骨組みの位置1、2、3、4、集成材間のパネル中央位置12、 34、リブ付パネルの位置 01,23,32,04 等の10か所に分け、各断面での測点位置を番号で定め、その点 にダイヤルゲージ(10-2mm 単位, 10~30 mm ストローク)をとりつけた。また、 測点番号の奇数は y 方向荷重における風上側を示し、偶数は風下側を示している。なお、集成材骨組みの頂部の測点1には図 版-5.12.1のごとく x, y 方向にダイヤルゲージをとりつけ, どの荷重条件の場合もその変位を 測定し, 各測点値間相互の比較の際の基準となるようにしている。また、12、34断面では他の断面と異なり頂部が 接続されていないので、測定1に代わる点として図版-5.12.2に示すごとく天井パネルの端縁に 1K(風 上側),1S(風下側)の測点を設けた。その他,図版-5.12.3は集成材頂部と肩部の中間位置(測点2,3),

図版-5.12.4は肩部(測点4,5),図版-5.12.5は脚部(測点8,9),図版5-12.6は12,34断面における 天井パネル中央部位(測点2,3),図版-5.12.7は同断面における壁パネルの窓枠下端部(測点6,7) の各測点に対する変形測定方法を例示している。

5.3.2 試験結果 この試験では風圧荷重に対する場合と積雪荷重に対する場合とがあるが,最初に 風圧荷重試験の結果について述べることとする。

5.3.2.1 風圧試験結果 各試験区分ごとに最大試験荷重に対する各測点の x.方向および y 方向の 実測撓み (δ_1)の平均値を求め、集成材骨組みに対して示したのが表-5.8であり、パネル部位に対して示 したのが表-5.9である。しかし、これらの実測撓みと荷重の関係は必ずしも直線的でなく、 図-5.15 に例

木造組立家屋に関する研究 第3報(沢田・山井・高見・近藤・杉山)

区分記号	荷重条件	集成材			x	方	向 V	ertical	direction		
Mark	Loading	Frame	1	2	3	4	5	6	7	8	9
壁 面 Wall plane RFI	風 上 (W)	1 2 3 4 M	84 43 57 7 47	145 191 164 156 164	135 211 179 99 156	560 482 521 728 585	576 586 430 510	- 320 - 323 - 304 - 407 - 339	506 420 455 492 468	-46 -18 - - - 32	80 42 — 61
	風 下 (L)	1 2 3 4 M	-46 -69 -74 -84 -68	65 77 85 70 74	22 40 33 19 29	-179 -169 -180 -215 -186	188 157 165 151 165	-171 -174 -192 -229 -189	131 97 103 115 112	-19 - 9 	31 13 — 22
	同 時 (C)	1 2 3 4 M	- 4 - 67 - 46 - 110 - 57	- 188 - 286 - 278 - 207 - 240	214 279 288 229 253	- 819 - 613 - 778 - 800 - 753	882 792 — 861 845	633 529 542 679 596	786 640 672 760 715	68 32 50	149 65 — 107

表-5.8.1 総合試験(風圧)における集成材部位での実測撓み (δ₁:×10⁻³cm) Table 5.8.1 Observed deflection of laminated timber frame at complete assemblies test (δ₁:×10⁻³cm).

 区分記号	荷重条件	集成材			y	方	向	Ho	rizonta	l direc	tion		
Mark	Loading	Frame	1	2	3	4	5	6	7	8	9	10	11
		1	1269	1071	1020	915	696	571	751	99	95	846	334
	1 121	2	1072	1070	1034	959	1026	426	645	18	66	899	379
	風上	3	1028	1068	920	969	813	427	637	-	-	894	375
	(W)	4	1014	1071	928	1165	800	497	669	-	—	839	376
		М	1096	1070	976	1002	819	480	676	59	81	870	366
壁面		1	256	324	299	313	205	266	143	79	34	219	172
	_	2	301	198	295	322	332	279	111	34	10	410	237
	風下	3	269	341	289	327	241	314	112	-	_	324	240
Wall	(L)	4	37 9	364	294	330	253	326	132	-		360	—
DET		М	301	307	294	323	258	296	124	57	22	328	216
NP 1		1	1485	1551	1554	1266	1359	876	926	200	147	1262	1198
		2	1587	1544	1593	1395	1398	733	917	46	83	1336	1371
	同時	3	1418	1600	1583	1508	1447	817	785	_	-	1352	1374
	(C)	4	1483	1659	1628	1350	1401	902	941	_	—	1309	—
		М	1493	1589	1590	1380	1401	832	892	123	115	1312	1314

注)δ1=最大荷重における実測値

Observed deflection at maximum load of test.

-109-

林業試験場研究報告 第158号

区分記号	荷重条件	集成材			x	方	向 V	ertical o	direction		· ·.
Mark	Loading	Frame	1	2	3	4	5	6	7	8	9
		1	14	-7	129	15	51	0	50	2	12
	1 12	2	18	-5	181	-6	44	-13	46	0	8
	風上	3	20	2	159	5	45	-2	39	_	
	(W)	4	15	-6	118	-6	101	-9	44	—	
		М	17	-4	147	-1	60	-6	45	1	10
屋根面		1	294	1358	-18	334	-137	319	~ 78	66	-21
臣依旧		2	304	1815	- 96	400	-127	319	-63	21	-11
	風ト	3	339	1837	-110	302	- 91	332		—	
Root plane	(L)	4	290	1267	- 47	335	- 66	309	-67	—	
PFΠ		М	307	1569	- 68	343	-105	320	-69	44	-16
М'Ш		1	305	1203	135	300	-54	321	-13	62	0
		2	307	1797	143	325	50	302	- 5	16	1
	问 時	3	360	1677	110	341	- 39	319	- 7	-	—
	(C)	4	288	1261	106	321	-43	301	-22	—	—
		М	315	1485	129	322	-47	311	-12	39	1

表-5.8.2 総合試験(風圧)における集成材部位での実測撓み(δ_1 : ×10⁻³cm) Table 5.8.2 Observed deflection of laminated timber frame at complete , assemblies test $(\delta_1 : \times 10^{-3} \text{cm})$.

区分記号	荷重条件	集成材			ر	方	向	Ho	rizonta	l direc	tion		
Mark	Loading	Frame	1	2	3	4	5	6	7	8'	9′	10	11
		1	13	18	-38	15	11	11	26	1	- 9	10	-19
	風上	2	3	13 9	-29 -16	14	26 26	3	44	-	-12	9	-39
	(W)	4	-4	10	-11	4	2	4	31		-	30	-11
		М	5	13	-24	11	16	6	33	1	-11	14	-28
屋根面 Roof plane		1	-351	45	-256	-300	-229	-298	-104	39	-27	-338	-163
		2	-294	145	-239	-430	-230	-333	-101	126	-12	-462	-147
	風ト	3	-251	238	-143	-386	-139	- 300	- 75	-	-	-572	-124
	(L)	4	- 259	61	-162	-315	-158	-247	- 84	-	-	- 305	- 207
PFΠ		М	- 289	100	- 200	-358	-187	- 295	- 91	83	-20	-420	-160
ил п		1	-226	65	- 206	-291	-143	-258	-48	27	- 25	-350	-138
	F-3 84	2	-165	244	- 196	-344	-130	- 290	-40	108	-27	-350	- 83
	同時	3	-207	260	-178	-361	-108	- 291	-27		-	-421	- 64
	(C)	4	-230	78	-168	-300	-112	-242	-38	-	-	-281	-151
		М	-207	162	- 187	-324	-123	- 270	-38	68	- 26	-351	- 109

注) δ_1 =最大荷重における実測値 Observed deflection at maximum load of test.

- 110 -

木造組立家屋に関する研究 第3報(沢田・山井・高見・近藤・杉山) -111-

区分記号	荷重条件	集成材			x	方	向 V	ertical	direction		
Mark	Loading	Frame	1	2	3	4	5	6	7	8	9
		. 1	126	- 92	330	-438	609	- 339	536	-46	106
		.2	86	-160	439	- 429	528	- 252	458	-18	54
	風上	3	91	-115	396	-429	519	-249	488		_
	(W)	4	28	- 99	243	-470	529	- 353	524		_
居坦		М	83	-117	352	-442	546	- 298	502	-32	80
庄似		1	111	1084	- 6	141	62	134	51	39	12
十壁山		2	98	1645	-18	145	55	141	28	9	3
	風下	3	147	1615	-35	158	53	130	38		
Roof +Wall	(L)	4	80	1026	-11	95	47	60	39	<u> </u>	
planes		Μ	109	1343	-18	135	54	116	39	24	8
RFIII		1	227	844	419	-526	708	-370	736	-26	142
		2	157	1328	467	- 454	767	-245	609	- 9	66
	同時	3	232	1420	419	-490	746	-240	641	-	-
	(<u>C</u>)	4	54	846	270	-600	776	-415	649		_
		М	168	1110	344	-518	749	-318	659	-18	104

表-5.8.3 総合試験(風圧)における集成材部位での実測撓み(δ1:×10-3cm) Table 5.8.3 Observed deflection of laminated timber frame at complete assemblies test (δ_1 : ×10⁻³cm).

区分記号	荷重条件	集成材			у	方	向	Ho	rizonta	l direc	tion	_	
Mark	Loading	Frame	1	2	3	4	5	6	7	8′	9'	10	11
		1	990	919	904	792	854	455	675	113	88	747	788
		2	987	872	897	844	891	370	669	33	42	782	858
	風上	3	966	793	845	819	827	358	642	-	-	770	841
	(W)	4	962	931	883	800	792	431	648	-	-	795	786
屋根 +壁面		М	976	854	842	814	841	404	659	73	65	774	[.] 818
		1	39	421	109	48	90	44	43	120	11	164	97
		2	35	635	122	13	101	9	35	195	4	225	180
	風下	3	18	573	161	-16	62	24	36	_	_	101	188
Root +Wall	(L)	4	39	397	86	31	77	92	34	—		. 220	99
planes		M	33	507	120	19	83	42	37	156	. 8	178	141
RFM		1	1373	1625	1330	1121	1218	634	882	241	124	1231	1157
ш		2	1433	1842	1347	1161	1294	528	838	184	52	1155	1257
	同時	3	1448	1876	1340	1187	1257	552	729		-	1051	1266
	(C)	4	1402	1829	1428	1220	1137	688	860	. c.		1236	1015
		M	1414	1793	1361	1172	1227	601	827	213	88	1168	1174

注) δ_1 =最大荷重における実測値 Observed deflection at maximum load of test.

...

林業試験場研究報告 第158号

区分記号	荷重条件	パネル			x 方	向 Ve	ertical dire	ction
Mark	Loading	Panel	1 K	1 S	2	3	4	5
	風 上 (W)	12 34 M	7 - 1 3	112 47 80		176 150 163	564 561 563	711 450 581
壁 面 Wall plane	風 下 (L)	12 34 M	53 74 64	-8 -31 -20	78 81 80	37 28 33		219 134 177
KF 1	同 時 (C)	12 34 M	-91 -99 -95	106 34 70	- 227 - 213 - 220	237 194 216	769 	764 749 757
屋根面 Roof plane <i>RF</i> II	風 上 (W)	12 34 M	56 45 51	12 7 10	1 4 3	196 207 202	- 2 - 7 - 5	53 10 32
	風 下 (L)	12 34 M	141 216 179	546 661 604	1815 1921 1868	-117 - 65 - 91	377 401 389	-68 -68
ΥΥ Π	同 時 (C)	12 34 M	218 302 260	592 666 629	1797 1864 1829	202 189 196	400 396 398	-17 -36 -27
屋根+壁面 Roof+Wall planes <i>RF</i> Ⅲ	風 上 (W)	12 34 M	107 59 83	142 76 109	-113 -82 -98	450 396 423	- 454 - 467 - 461	499 470 485
	風 下 (L)	12 34 M	33 62 48	285 449 	1656 1657 1657	- 5 - 8 - 7	168 7148 158	47 42 45
	同 時 (C)	12 32 M	151 102 127	541 473 507	1453 1481 1467	497 405 451	431 521 476	745 668 707

表-5.9 総合試験(風圧)におけるパネル Table 5.9 Observed deflection of panel at

 δ_1 =最大荷重における実測値 Observed deflection at maximum load of test.

示してあるように,負荷の初期ではやや不安定であり,荷重の増大に伴って撓みの増加率がやや大きくな る傾向がみられる。したがって,建物の剛性をある程度大きな荷重のもとで評価するには,この場合の最 大試験荷重と,その1/2 荷重区間での変形量を基準にとる方が実際的であると考え,換算補正撓み $\delta_2=2$ ($\delta_1 - \delta_m$)を求め,表-5.10,5.11に示した。ここの δ_m は最大荷重の1/2にあたる荷重に対する実測変形 量である。いま,これらの結果を主として δ_2 について,各試験区分ごとの特徴的な点を述べてみること にする。なお,数値に付してある符号は水平撓みの正値は風下側,負値は風上側,垂直撓みの正値は上向

-112-

部位での実測撓み (δ₁:×10-³cm) complete assemblies test (δ_1 : ×10⁻³cm)

			ز	, 方	向 Ho	rizontal	dirction		_
6	7	1 K	1 S	2	3	4	5	6	7
-334	527	1066	1044	1087	1005	918	1006	508	1181
- 292	557	1073	1074	1066	932	923	964	437	1055
-313	542	1070	1059	1072	969	921	985	473	1118
- 207	109	309	309	329	295	335	284	500	120
-248	99	332	344	242	296	301	254	526	129
-220	104	321	327	286	296	318	269	513	125
-577	762	1649	1538	1591	1600	1349	1498	1059	1347
-579	776	1659	1915	1506	1628	1526	1553	1025	1361
-578	769	1654	1727	1550	1614	1438	1526	1042	1354
-5	49	12	13	20	-47	13	- 4	10	37
0	50	13	8	13	- 29	8	-86	6	41
-3	50	13	11	17	-38	11	-45	13	39
311	-76	- 268	- 167	177	- 255	-351	-250	-371	-108
315	-63	-229	- 74	246	-155	-285	-213	-230	-100
313	-70	-249	-122	217	-205	-318	-232	-346	-104
289	0	- 203	- 99	227	- 226	-238	-146	-321	-42
298	-15	-209	-135	265	-198	-270	-111	-306	-33
294	- 8	- 206	-117	246	-212	-254	-129	-314	-38
-264	561	910	948	941	959	804	977	433	1101
-213	587	979	987	935	832	790	937	358	1143
- 239	574	945	968	938	896	797	957	396	1122
84	34	91	143	641	112	48	98	240	32
32	27	75	119	608	96	40	76	236	29
58	31	83	131	625	108.	44	87	238	31
- 298	729	1395	1466	1885	1357	1137	1345	797	1316
- 294	712	1507	1574	2059	1310	1216	1336	775	1202
- 296	721	1451	1520	1972	1334	1177	1341	786	1259

き、負値は下向きへ変位した場合を示している。

i) 壁面荷重(y 方向水平荷重) 集成材部位における垂直撓みについてみれば,頂点以外はどの場合 も風上側の測点は上向きの値を示し、風下側の測点は下向きの値を示している。その最大値は平均値Mについてみれば同時荷重での測点5の約 11.0 mm である。これに対し水平撓みの最大値は同時荷重での 測点3の約 22.5 mm である。荷重点より上部の測点についてみれば,風上荷重で 9.7~14.1 mm,風下 荷重で 3.0~4.4 mm, 同時荷重で 18.4~22.5 mm 程度の値となっている。 なお, リブ付パネルの直立

⁽b) 壁面荷重による測点1,4,5,6および7 (δ_y) Measuring points 1,4,5,6&7 at loading to wall plane (δ_y).

図-5.15 総合試験(風圧)における集成材骨組(B_2)の荷重一変形曲線 Fig. 5.15 Load-deflection diagrams of laminated frame B_2 at complete assemblies test.

- 114 --

(d) 屋根面荷重による測点1,4,5,6および7 (δ_y) Measuring points 1,4,5,6 & 7 at loading to roof plane (δ_y).

図-5.15 総合試験(風圧)における集成材骨組(B₂)の荷重一変形曲線(つづき) Fig. 5.15 Load-deflection diagrams of laminated frame B₂ at complete assemblies test (Continued).

(e) 壁面および屋根面荷重による測点1,2,3,4および5 (δ_x) Measuring points 1, 2, 3, 4 & 5 at loading to wall & roof planes (δ_x).

(f) 壁面および屋根面荷重による測点1,4,5,6および7 (δ_y) Measuring points 1,4,5,6&7 at loading to wall & roof planes (δ_y).

図-5.15 総合試験(風圧)における集成材骨組(B₂)の荷重一変形曲線(つづき) Fig. 5.15 Load-deflection diagrams of laminated frame B₂ at complete assemblies test (Continued).

-116-

区分記号	荷重条件	集成材			x	方	向 V	ertical	direction		
Mark	Loading	Frame	1	2	3	4	5	6	7	8	9
-		1	72	-166	150	-628	654	-444	588	-50	86
		2	46	- 226	270	-510	634	-350	504	-22	84
	風上	3	64	-204	228	-574	438	-340	546		
	(W)	4	34	-176	134	-836	620	-426	570		
		М	54	- 193	198	-637	587	-390	552	-36	85
壁 面 Wall		1	- 54	- 66	36	-228	234	-208	152	-24	38
		2	- 88	- 88	66	-210	196	-200	132	-14	18
	風下	3	- 90	-102	54	-208	184	-212	112		
Wall	(L)	4	-108	- 84	34	-250	184	- 258	140		
plane RFI		М	- 85	- 85	48	-224	200	-220	134	-19	28
		1	- 60	-260	264	-1054	1122	812	1006	-84	200
		2	-120	-386	364	- 702	1038	-682	818 [°]	-40	84
	同時	3	- 74	-366	402	-1020	_	-684	866		
	(C)	4	- 152	-274	372	- 970	1148	-826	980		
		м	-102	-322	351	- 935	1103	-751	918	-62	142

表-5.10.1 総合試験(風圧)における集成材部位での補正撓み (δ₂:×10⁻³cm) Table 5.10.1 Corrected deflection of laminated timber frame at complete assemblies test (δ₂:×10⁻³cm).

区分記号	荷重条件	集成材			y	方	向	Ho	rizonta	direc	tion .		
Mark	Loading	Frame	1	2	3	4	5	6	7	8	9	10	11
	風 上 (W)	1 2 3 4	1688 1282 1372 1286	1210 1212 1184 1184	1192 1226 1148 1156	1016 1066 1064 1420	724 1184 996 990	582 476 472 532	1016 752 746 780	104 12	116 84	1024 1040 1038 926	1064 1126 1140
壁 面 Wall plane RF I		м	1407	1198	1181	1142	974	516	824	58	100	1CO7	1110
	風 下 (L)	1 2 3 4 M	412 464 400 476 438	436 146 424 436 366	396 392 334 348 368	386 408 398 400 398	250 358 300 294 301	336 354 354 370 354	182 150 138 152 156	102 42 72	40 18 29	394 630 424 446 474	314 342 336 331
	同 時 (C)	1 2 3 4 M	1980 2098 1940 2080 2025	2036 1996 2098 2336 2117	2040 2604 2142 2192 2245	1700 1786 1976 1900 1841	1862 1840 1982 1892 1894	1134 908 1020 1124 1047	1156 1180 918 1186 1110	250 36 143	180 100 140	1674 1758 1780 1660 1718	1538 1780 1788 — 1702

注) $\delta_2 = (\delta_1 - \delta_C) \times 2$

 δ_1 =Observed deflection at maximum load of test.

 δ_c =最大荷重の 1/2 における実測値 Observed deflection at one half maximum load.

林業試験場研究報告 第158号

 区分記号	荷重条件	集成材			x	方	向 V	ertical	direction		
Mark	Loading	Frame	1	2	3	4	5	6	7	8	9
		1	6	- 4	146	16	42	2	52	4	14
	副下	2	12	- 8	214	- 6	38	- 5	42	2	8
		3	24	- 6	182	- 4	40	0	46		
	(W)	4	16	- 4	120	0	44	- 8	44		
		М	15	- 6	166	2	41	- 3	46	1	11
屋根面 Roof plane		1	510	1992	- 14	456	-158	428	-100	86	-24
		2.	536	2402	-122	540	-144	410	- 80	26	-12
	風ト	3	576	2472	-138	358	-118	418	, <u>—</u>		
	(L)	4	510	1804	- 54	450	- 66	392	- 80		
PFπ		М	533	2168	- 82	451	-122	412	- 87	56	-18
т		1	526	1732	154	392	-72	422	-24	84	0
	· ·	2	536	2460	744	450	-68	396	-20	22	2
	同時	3	604	2184	112	466	-50	406	-22		
	(C)	4	502	1994	114	438	-62	382	-30		
		М	542	2043	131	437	-63	402	-24	53	1

表-5.10.2 総合試験(風圧)における集成材部位での補正撓み(δ₂:×10⁻⁸cm) Table 5.10.2 Corrected deflection of laminated timber frame at complete assemblies test (δ₂:×10⁻⁸cm).

区分記号	荷重条件	集成材			ر	, 方	向	Ho	orizonta	l direc	tion		
Mark	Loading	Frame	1	2	3	4	5	6	7	8'	9'	10	11
		1	0	16	-48	20	26	-6	30	4	- 8	2	-4
		2	2	-18	-44	16	28	16	34	4	-18	16	-56
	風上	3	6	10	-14	8	22	2	38			14	-40
	(W)	4	İ6	14	-20	0	14	4	,22			40	-14
		М	6	15	-32	11	23	7	31	4		18	-29
昌相志		1	-536	<u> </u>	-300	- 466	-278	-406	-112	28	-28	-660	-266
屋根面		2	-446	148	-284	-644	-268	-452	-114	96	-18	-1140	-110
	風ト	3	- 198	246	-186	-592	-184	-416	- 92			-1264	- 70
K001 plane	(L)	4	-412	14	-226	-520	-216	-354	-112			- 586	-234
PEn		М	-398	91	-249	-556	-237	- 407	-108	62	-23	-913	-170
ил п		1	-388	46	-260	- 452	-182	-366	-66	14	-30	-756	-168
		2	-298	256	-230	-552	-158	-400	-52	86	-42	-1000	- 18
	同時	3	-346	278	-214	-568	-148	-404	-46			-1080	2
	(C)	4	-392	50	-224	-490	-160	-338	-54			-,622	-162
		М	-356	158	-232	-516	-162	-402	-55	5Ó	-36	- 865	- 86

注) $\delta_2 = (\delta_1 - \delta_C) \times 2$

 δ_1 = Observed deflection at maximum load of test.

 δc =最大荷重の 1/2 における実測値 Observed deflection at one half maximum load.

木造組立家屋に関する研究 第3報(沢田・山井・高見・近藤・杉山)

· · · ·

 区分記号	荷重条件	集成材			x	方	向 V	ertical	direction		
Mark	Loading	Frame	1	2	3	4	5	6	7	8	9
		· 1	142	-122	398	-554	716	- 398	598	-54	124
		. 2	100	-222	520	-512	622	-280	524	-20	62
	風上	3	112	-156	444	-520	616	-296	520		
	(W)	· 4	28	-122	262	-560	624	-414	606		
屋垣		M	96	- 156	406	-537	645	-347	562	-37	93
<u></u> 止 低 + 壁 面		1	194	1370	- 8	. 154	96	142	76	44	14
		[.] 2	194	2038	-10	152	80	136	46	6	4
Roof	風下	3	266	2030	-38	172	80	136	52		
+Wall	(L)	. 4	154	1248	- 2	90	82	50	62		
planes	·	М	202	1672	-15	142	85	116	59	25	9
RFⅢ		1	324	1020	552	-666	778	-500	904	-34	176
		2	64	1886	570	-570	984	-344	754	-10	80
	同時	3	386	1880	506	-640	952	-328	798		
	(C)	4	116	1090	348	-800	998	-530	764		
		М	223	1469	494	-669	931	- 426	805	-22	128

表-5.10.3 総合試験(風圧)における集成材部位での補正撓み(δ2:×10-3cm) Table 5.10.3 Corrected deflection of laminated timber frame at complete assemblies test (δ_2 : ×10⁻³cm).

	荷重条件	集成材			у	方	向	Ho	rizonta	l direc	tion		
Mark	Loading	Frame	1	2	3	4	5	6	7	8′	9′	10	11
		· 1	1248	1116	946	946	1222	540	776	130	102	910	952
		· 2	1270	1020	1078	1032	1064	440	798	34	50	950	1044
	風上	. 3	1272	886	.1006	998	1018	430	742			934	1024
	(W)	4	1164	1130	1054	960	948	516	732			946	994
层規		М	1236	1038	1021	894	1063	482	762	82	76	935	1004
座似 +壁面		1	84	522	170	36	136	54	76	142	10	38	138
		2	68	766	186	-20	152	22	62	140	4	180	290
Roof	風ト	[.] 3	102	732	272	-34	140	26	68			300	296
+Wall	(L)	. 4	102	488	142	22	116	102	62			50	142
planes		М	89	625	193	1	136	51	67	141	7	142	217
RFⅢ		1	1724	2024	1664	1374	1514	788	1068	268	150	1464	1464
		2	1892	2174	1714	1428	1638	662	842	176	6	970	1620
	同時	3	2038	2400	1740	1532	1676	696	814			892	1642
	(C)	4	1790	2234	1906	1580	1430	860	1054			1366	1266
		М	1861	2208	1756	1479	1565	752	945	222	105	1173	1498

注) $\delta_2 = (\delta_1 - \delta_C) \times 2$

 δ_1 =Observed deflection at maximum load of test.

.

 δc =最大荷重の 1/2 における実測値 Observed deflection at one half maximum load.

林業試験場研究報告 第158号

区分記号	荷重条件	パネル			x	方向	Vertical d	irection
Mark	Loading	Panel	1 K	1 S	2	3	4	5
	風 上 (W)	12 34 M	2 18 10	112 54 83	- 192 - 150 - 171	220 196 208	-572 -618 -595	814 540 677
些 闻 Wall plane	風 下 (L)	12 34 M	70 90 80	-12 -36 -24		64 46 55	-208 -264 -236	268 358 313
RF I	同 時 (C)	12 34 M	-126 -108 -117	100 38 69	296 266 281	298 276 287	- 1004 	1008 972 990
	風 上 (W)	12 34 M	62 44 53	12 10 11	0 6 3	238 210 224	4 6 5	46 42 44
屋根面 Roof plane	風 下 (L)	12 34 M	348 378 313	858 1032 945	2420 2520 2470		518 556 537	74 74
RFII	同 時 (C)	12 34 M	348 506 427	940 1042 991	2418 2454 2436	224 192 208	534 536 535	
	風 上 (W)	12 34 M	146 72 109	168 86 127		532 430 481	552 554 553	978 540 759
屋根+壁面 Roof+Wall planes	風 下 (L)	12 34 M	80 130 105	356 660 508	2004 2066 2035	- 4 4 0	194 146 170	72 74 73
RFⅢ	同 時 (C)	12 34 M	262 84 173	742 654 698	1688 1790 1739	616 498 557	572 690 631	970 842 906

表-5.11 総合試験(風圧)におけるパネル Table 5.11 Corrected deflection of panel at

注) $\delta_2 = (\delta_1 - \delta_C) \times 2$

 δ_1 =Observed deflection at maximum load of test.

 $\delta c = 最大荷重の 1/2 における実測値$ Observed deflection at one half maximum load.

部中央にあたる測点10,11の水平撓みも肩部の測点4,5に近似した値を示している。パネル部位でも大体類似の傾向を示すが,頂部の1K(風上側),1S(風下側)点の垂直撓みが同時荷重の場合に相反する動きをしたり,荷重枠付近の窓枠下端部にある測点6,7の水平撓みが荷重条件によっては集成材部位よりかなり大きいのがめだっている。垂直撓みの最大値は同時荷重での測点4の10.0mm(下向),水平撓

部位での補正撓み (δ₂:×10⁻³cm)

complete assemblies test (δ_2 : ×10⁻³cm).

			у	方「	句 Hor	izontal d	irection		
6	7	1 K	1 S	2	3	4	5	6	7
-374	744	1214	1222	1130	1232	1032	1160	550	1492
-314	658	1252	1254	1184	1148	1028	1156	472	1198
-344	701	1233	1238	1157	1190	1030	1158	511	1345
-260	126	412	412	428	400	412	358	648	166
-266	118	412	434	188	348	372	300	582	144
-263	122	412	423	308	374	392	329	615	155
-734	966	2182	2000	2078	2110	1714	1950	1444	1746
-702	964	2160	2248	1928	2180	2064	2076	1236	1700
-718	965	2171	2124	2003	2145	1889	2013	1340	1723
0	44	10	12	22	-52	12	22	4	· 44
- 4	52	16	8	8	-44	.4	18	2	38
- 2	4	13	10	15	-48	8	20	3	41
420	- 96	-332	-242	192	-316	-508	-304	-496	-106
414	-60		-130	226	-208	- 466	-310	-434	-122 5
417	-78	- 339	-186	209	-262	- 487	-307	-465	-114
382	-42	-296	-174	194	-272	-360	-168	-444	-52
396	18	-310	-236	244	-246	-450	-138	-414	-44
389	-30	303	- 205	219	- 259	- 405	-153	-429	-48
-316	642	1148	1176	1340	980	978	1154	. 510	1346
-280	666	1186	1198	1146	994	960	1112	434	1336
-298	654	1167	1187	1243	987	969	1133	472	1341
38	54	148	234	748	178	26	152	324	74
26	48	138	212	716	156	46	112	262	54
32	51	143	223	732	167	36	132	293	64
-412	882	1766	1852	2320	1714	1378	1656	1004	1622
-356	836	1966	2052	2458	1694	1580	1698	942	1356
	859	1866	1952	2389	1704	1479	1677	973	1489

みの最大値は同時荷重での測点 1K の 21.7 mm である。

ii) 屋根面荷重(x 方向突上げ荷重) 集成材部位での変形をみると,風上面単独の場合は他の場合 にくらべて荷重が僅少であるため、突上げ荷重を加えた付近の測点3の垂直撓みが約 1.7 mm を示すだ けで、その他の点はいずれも小さく、約 0.5 mm 以下である。また、頂部および荷重をうける風上側の

.

垂直撓みは上向きであるのに対し,風下側ではほとんど撓みを生じていない。なお,この場合の水平撓み はいずれも 0.5 mm 以下で,測点3,9',11は風上側に,その他は風下側に変位している。風下面単独の 場合は頂部および荷重をうける風下側の垂直撓みは上向きであるが,風上側では下向きである。また,こ の場合の水平撓みをみると,測点2,8'は風下側に,その他の点は風上側に変位している。ただ,測点2 の水平撓みが,妻側の集成材と中央付近の集成材とでいちじるしく異なるのがめだっている。風上下同時 荷重の場合は両者の和であるので,若干の例外はあるが,ほぼ重ね合わせの状態に近い結果となってい る。垂直撓みの最大値は風下荷重での測点2の約 21.7 mm,水平撓みの最大値は風下荷重での測点4の 約 5.6 mm である。リブ付パネルの直立部中央の測点の撓みは,壁面荷重の場合にくらべて不規則で, 風下単独,風上下同時のときの測点10がいちじるしく風上側に変位している。パネル部位についても集成 材部位とほぼ類似の傾向がうかがえるが,荷重枠が直接あたる付近の垂直撓みはやや増大している。また 頂部の天井パネルは構造上風上側と風下側とに離れており直結させていないので,測点1Kと1Sの垂直 撓みはかなり異なっている。パネル部位での最大垂直撓みは,風下荷重における測点2の約 24.7 mm, 最大水平撓みは同じく風下荷重における測点4 の約 4.7 mm である。

iii) 壁面と屋根面組合わせ荷重(*x*+y 方向荷重) 集成材部位での 撓みをみると, 風上荷重の場合 は屋根面突上げ荷重にくらべ、壁面水平荷重が支配的であるため、壁面単独の場合に類似の結果を生じて いる。すなわち,水平撓みはすべて風下方向に生じ,頂点および風上側の測点の垂直撓みは上 向 き で あ り、風下側の撓みは下向きとなっている。風下荷重の場合は、屋根面突上げ荷重と壁面水平荷重の影響が 重なり合う結果、垂直撓みでは測点3のみが下向きとなり、水平撓みではほとんどが風下方向に生じてい る。風上下同時荷重の場合は、これら両荷重条件の影響があらわれ、垂直橈みでは風下側の測点4、6、 8が下向きとなり,水平撓みはすべて風下方向に生じている。垂直撓みの最大値は同時荷重における測点 2の約 12.7 mm, 水平撓みの最大値は同じく同時荷重における測点2の約 22.1 mm である。 なお, リ ブ付パネルにおける測点10,11の水平撓みはかなり大きく,風下単独荷重以外は,肩部の測点4,5に近 似した傾向を示している。また、パネル部位でも集成材部位にほぼ類似の結果となっているが、垂直撓み では風下単独,風上下同時荷重における 測点2の値がかなり 増大しているほか, 測点1Kと1Sの差が かなりはげしくなっている。また,水平撓みでは風上単独の場合の測点7,風下単独の場合の測点6,風 上下同時荷重の場合の測点7など、荷重枠を支えた窓枠下部の測点の撓みがいちじるしく増大している。 この部位における垂直撓みの最大値は風下荷重における測点2の約 20.4 mm, 水平撓みの最大値は同時 荷重における測点2の約 23.9 mm である。

iv) 試験荷重による実測撓みと三鉸節条件での計算撓みの比較 試験最大荷重による各集成材骨組 みの実測撓みの平均値 δ_1 と, この骨組みの接合条件を三鉸節として求めた主要部位の計算撓み δ_0 を表 -5.12に示す。なお、この表にさきに述べた換算補正撓み δ_2 も併記した。いま, 計算撓みに対する実測 撓み、補正撓みの比を $\alpha_1 = \delta_1/\delta_0$, $\alpha_2 = \delta_2/\delta_0$ として示すと表-5.13 のごとくなる。ここでは、屋根面突 上げ荷重が関与する場合は 垂直撓みだけ、壁面水平荷重が関与する場合は 水平撓みだけ、組合せ荷重の 場合は両者をそれぞれ比較の対象とした。負値で示してあるのは実測撓みと計算撓みの変位方向が異なる 場合である。垂直撓みにおける比の値は不規則で、とくに、風上側突上げの場合の風下側の測点、風下側 突上げの場合の風上側の測点の挙動は不安定である。これに対し、水平撓みにおける比の値は比較的安定 しており、壁面単独荷重の場合の比の平均値は $\overline{\alpha}_1 = 0.021$, $\overline{\alpha}_2 = 0.026$, また、壁面と屋根面 荷重 組合

荷重	条 件	撓 み Deflection	垂	垂 直 撓 み Vertical deflection					水 平	^z 撓	み Hor	izontal de	flection	
Loading	condition /	_ 10 ⁻³ cm	δ_{x_1}	δ_{x_3}	δ_{x_5}	δ_{x_2}	δ_{x_4}	δ_{y_1}	δ_{y_8}	δ_{y_5}	δ_{y_7}	δ_{y_2}	δ_{y_4}	δ_{y_6}
	風上 (W)	$\delta_0 \ \delta_1 \ \delta_2$	3909 17 15	3266 147 166	2868 60 41	-1275 -4 -6	-855 - 1 2	3160 5 6	3385 - 24 - 32	3364 16 23	2962 33 31	2235 13 15	1536 11 11	957 6 7
屋 根 Roof	風下(L)	$\delta_0 \ \delta_1 \ \delta_2$	19423 307 533	6335 — 68 — 82	- 4250 - 105 - 122	16228 1569 2168	14248 343 451			7632 187 237	- 4756 - 91 108	16819 100 91		
	同時(C)	$\delta_0 \ \delta_1 \ \delta_2$	23332 315 542	9601 129 131	1382 47 63	17503 1485 2043	13393 322 437		7720 187 232	4268 123 162		14584 162 158		
	風上 (W)	$\delta_0 \ \delta_1 \ \delta_2$	8685 47 54	12741 156 198	27597 526 587	-4113 - 164 - 193	23500 585 637	45719 1096 1407	44282 976 1181	37839 819 974	30017 676 824	41217 1070 1198	33697 1002 1142	25482 480 516
壁 Wall	風下 (L)	$\hat{\delta}_0 \\ \delta_1 \\ \delta_2$		2062 29 48	11778 165 200	6386 74 85		22915 301 438	20659 294 368	16889 258 301	12772 124 156	22195 307 366	18965 323 398	15045 296 354
(<i>RF</i>])	同時(C)	$\delta_0 \ \delta_1 \ \delta_2$	4332 - 57 - 102	14803 253 351	39375 845 1103	- 10499 - 240 - 322	37332 753 935	68634 1493 2025	64941 1590 2245	54728 1401 1894	42789 892 1110	63412 1589 2117	52662 1380 1841	40527 832 1047
	風上 (W)	$\delta_0 \ \delta_1 \ \delta_2$	12594 83 96	16007 352 406	30465 546 645	-2838 - 117 - 156	24355 442 537	48879 976 1236	47667 842 1021	41203 841 1063	32979 659 762	43452 854 1938	35233 814 894	26439 404 482
屋根+壁 Roof +Wall	風下 (L)	$egin{array}{ccc} \delta_0 & & \ \delta_1 & & \ \delta_2 & & \end{array}$	15070 109 202	8397 - 18 - 15	7528 54 85	9842 1343 1672	416 135 142	7212 33 89	9554 120 193	9257 83 136	8016 37 67	5376 507 625	2251 19 1	330 42 57
(<i>RF</i> Ⅲ)	同時(C)	$\delta_0 \ \delta_1 \ \delta_2$	27664 168 323	24404 344 494	37993 749 931	7004 1110 1469	23939 518 669	56091 1414 1861	57221 1361 1756	50460 1227 1565	40995 827 945	48828 1793 2208	37474 1172 1479	26769 601 752

表-5.12 試験荷重による三鉸節条件での計算撓み(δ₀)と実測撓み(δ₁)

Table 5.12 Observed deflection and calculated deflection as three hinged frame condition at test.

 $\delta_0 = 三鉸節ラーメンとしての計算値 Deflection calculated as three hinged frame (<math>\overline{EI} = 125 \times 10^6 \text{kgcm}^2$) $\delta_1 =$ 最大試験荷重における実測値 Observed deflection at maximum load of test. $\delta_2 = 同実測値の補正値=(\delta_1 - \delta_m) \times 2 = \text{Corrected deflection.}$ $\subset Cc \delta_m \ \text{kitt} 験荷重の 1/2 \ \text{kitt} \delta_m = \text{Observed deflection at one-half maximum load of test.}$ $\delta_{x1}, \delta_{y1} = \text{Deflection in direction of 1st subscript at point of 2nd subscript, respectively (Fig. 5,14),}$ 注) $\delta_0 = 三 ext{s}$ 節ラーメンとしての計算値 $\delta_1 =$ 最大試験荷重における実測値

123

荷重	条件	撓みの比	垂	直撓。	み Vertic	al deflecti	ion		水平	撓	み Ho	rizontal d	eflection	
Loading	condition	Ratio	α_{x_1}	α_{x3}	α_{x5}	α_{x_2}	α_{x4}	α_{y_1}	α _{y3}	α_{y_5}	α y7	α_{y_2}	α _{y4}	α_{y_6}
	風上 (W)	$lpha_1 \ lpha_2$	0.004 0.004	0.050 0.050	0.021 0.014	-0.003 -0.005	0.001 -0.002							
屋 根 Roof	風下 (L)	$lpha_1 \\ lpha_2$	0.016 0.027	-0.011 -0.013	0.025 0.029	0.096 0.134	0°024 0.032							
$(RF \blacksquare)$	同時(C)	$\begin{array}{c} \alpha_1 \\ \alpha_2 \end{array}$	0.014 0.023	0.013 0.014	0.034 0.046	0.085	0.024 0.033			-				a
	風上 (W)	$\begin{array}{c} \alpha_1 \\ \alpha_2 \end{array}$						0.024 0.031	0.022 0.027	0.022 0.026	0.023 0.027	0.026 0.029	0.030 0.034	0.019 0.020
壁	風下 (L)	$\begin{array}{c} \alpha_1 \\ \alpha_2 \end{array}$						0.013 0.019	0.014 0.018	0.015 0.018	0.010 0.012	0.014 0.016	0.017 0.021	0.020 0.024
Wall (<i>RF</i> I)	同時(C)	$\begin{array}{c} \alpha_1 \\ \alpha_2 \end{array}$		-				0.022 0.030	0.024 0.035	0.026 0.035	0.021 0.026	0.025 0.033	0.026 0.035	0.021 0.026
	Mean	$\frac{\overline{\alpha}_1}{\overline{\alpha}_2}$			-						0.021 0.026			
	風上 (W)	$\begin{array}{c} \alpha_1 \\ \alpha_2 \end{array}$	0.007 0.008	0.022 0.025	0.018 0.021	0.041 0.055	0.018 0.022	0.020 0.025	0.018 0.021	0.020 0.026	0.020 0.023	0.020 0.024	0.023 0.025	0.015 0.018
屋根+壁	風下 (L)	$lpha_1 \ lpha_2$	0.007 0.013	-0.002 -0.002	0.007	0.136 0.170	0.325 0.341	0.005 0.012	0.013 0.020	0.009 0.015	0.005 0.008	0.094 0.116	0.008 0.001	0.127 0.155
Koot +Wall	同時(C)	$\left \begin{array}{c} \alpha_1 \\ \alpha_2 \end{array} \right $	0.006 0.012	0.014 0.020	0.020 0.025	0.158 0.210	0.022 0.028	0.025 0.033	0.024 0.031	0.024 0.031	0.020 0.023	0.037 0.045	0.031 0.039	0.022 0.028
$(RF \blacksquare)$	Mean	$\frac{\overline{\alpha}_1}{\overline{\alpha}_2}$									0.028			

表-5.13] 【試験荷重による実測撓みの三鉸節条件での計算撓みに対する比(α)

Table 5.13 Ratio of observed deflection to calculated deflection as three hinged frame condition at test (α).

注)α=実測値/計算値 Observed value/Calculated value.

 $\alpha_1 = \delta_1 / \delta_0$, $\alpha_2 = \delta_2 / \delta_0$

屋

.林業試驗場研究報告 第158号

せの場合は多少変動は大きいが、 $\bar{\alpha}_1$ =0.028、 $\bar{\alpha}_2$ =0.034 となっている。 さきに述べた水平荷重による分 解試験では、中央の間仕切りパネルから妻パネルにいたる建物半分を対象にし、両期部をチャンネルにボ ルト接合しているが、ここでの比に相当する $\bar{\alpha}$ の値は 表-5.2 の最後の欄によれば Ra/Hc=0.027 であ った。分解試験の場合は作用荷重も低かったので、いま、ここでの壁面単独荷重の場合の $\bar{\alpha}_1$ =0.021 と 比較すると、わずかながらこの完成建物による値の方が小さく、みかけの剛性は大きくなっている。この 数値関係がどの程度安定したものであるかは将来の検討にまたねばならないが、この差異について期部の 接合条件から考えると、完成建物の場合は両期部を地杭にボルト接合しているにすぎないから、むしろ建 物剛性を低くしているとしかみられないので、恐らく妻パネルの筋かい拘束とみてよいかもしれない。

v) 試験建物の設計用風圧荷重による変形量の推定 この建物に対する設計用風圧荷重を q=120kg/m² と 180kg/m² の場合にとり、集成材骨組みを三鉸節ラーメンとみなして主要部位の撓みを計算すると 表-5.14のごとくなる。なお、この場合の風上側屋根面における風力係数 *C* の値は 0.07 であるが、実際 の総合試験の場合はこの *C* の値を 0.1 とみて、これに相当する荷重を加えている。いま、この表の計算 値に前項で述べた α_2 の値を乗じて、各種荷重区分における最大撓みを換算推定すれば、つぎのごとくな る。ただし、水平撓みに対しては α_2 の平均値 $\overline{\alpha}_2$ を用いたが、垂直撓みに対しては対応する 個々の α_2 の値を用いた。

 屋根面(同時荷重)
 $\delta_{x1} = 4.7 \text{ mm}$ ($q = 120 \text{ kg/m^2}$)

 $\delta_{x1} = 7.1 \text{ mm}$ ($q = 180 \text{ kg/m^2}$)

 壁面(同時荷重)
 $\delta_{y1} = 12.7 \text{ mm}$ ($q = 120 \text{ kg/m^2}$)

 麦u= 19.0 mm
 ($q = 180 \text{ kg/m^2}$)

 屋根+壁面(同時荷重)
 $\delta_{x5} = 4.1 \text{ mm}$ ($q = 120 \text{ kg/m^2}$)

 $\delta_{y3} = 19.5 \text{ mm}$ ($q = 120 \text{ kg/m^2}$)

 $\delta_{y3} = 19.5 \text{ mm}$ ($q = 120 \text{ kg/m^2}$)

 $\delta_{y3} = 29.3 \text{ mm}$ ($q = 180 \text{ kg/m^2}$)

したがって、q=180 kg/m² の場合、最大推定撓みは、 屋根面と壁面組合せ条件における風上下同時荷 重での測点5の垂直撓み 14.1 mm と、 測点3の水平撓み 29.3 mm とになる。 測点5は風上側肩部の 位置であるが、この垂直撓みの値は、建物の脚部接合点間隔 5 m の約 1/350 であり、風上下両肩間隔 7.90 m の約 1/178 にあたる。また、 測点3は風上側通直登梁の中央部であるが、その水平撓みはこの点 の高さ 2.95 m の約 1/100 にあたっている。なお、最大試験荷重に対する壁面の角度変化を、壁面と屋根 面組合せによる風上下同時荷重の場合につき、肩部の測点5、4 の補正撓み 15.7 mm、14.8 mm を用い て計算すると、風上側で約21分、風下側で約20分となる。

5.3.2.2 積雪試験結果 さきに述べたごとく,屋根全面に対し設計荷重の1/2程度(≒150kg/m²) の砂袋を積載して撓みの測定を終了したときに,通直登梁の1本にスカーフ剥離が生じ試験の続行を中止 したため,積雪荷重に対する十分な検討はできなかったが,各試験区分に対する集成材およびパネル部位 の実測撓みを表-5.15に示す。また,風圧試験の場合と同様に換算補正した撓みを表-5.16に示す。ただ, 屋根全面の場合は荷重階の5回目が最終になっているため,3回目から5回目にいたる数値を基準にして 換算したが,その他の場合は最大荷重とその1/2荷重区間の数値を基準にして換算した。なお,数値に付 してある符号も風圧試験の場合と全く同じく,垂直撓みの負号は下向き,水平撓みの正値は風下側,負値

荷重	条件	速度圧	垂	直撓。	み Vertic	al deflect	ion	水 平 撓 み				Iorizontal deflection			
Loading	condition	q kg/cm ²	δ_{x_1} 10 ⁻³ cm	δ_{x_3} 10 ⁻³ cm	δ_{x_5} 10 ⁻³ cm	δ_{x_2} 10 ⁻³ cm	δ_{x_4} 10 ⁻³ cm	δ_{y_1} 10 ⁻³ cm	δ_{y_3} 10 ⁻³ cm	δ_{y_5} . 10^{-3} cm	δ_{y_7} 10 ⁻³ cm	δ_{y_2} 10 ⁻³ cm	δ_{y_4} 10 ⁻³ cm	δ ₉₆ 10 ⁻³ cm	
屋根	風上(W) 風下(L) 同時(C)	120	2535 18105 20640	1377 10215 11592	— 25 9445 9420	1430 9833 11263	1322 - 175 1147	- 1314 9379 8065	- 909 12147 11238	- 457 11680 11223	— 123 10066 9943	- 1701 6489 4788	- 1635 3265 1630	- 1409 879 - 530	
Roof (<i>RF</i>]])	風上(W) 風下(L) 同時(C)	180	3802 27158 30960	2065 15323 17388	— 37 14167 14130	2145 14750 16895	1983 262 1721	- 1970 14068 12098	- 1363 18221 16858	— 686 17519 16833	— 184 15099 14915	-2551 9733 7182	-2453 4897 2444	-2114 1318 - 796	
壁	風上 (W) 風下 (L) 同時 (C)	120	6190 3095 3095	9137 1463 10600	19745 8326 28071	- 2926 - 4568 - 7494		32560 16280 48840	31517 14674 46191	26924 12001 38925	21411 9073 30484	29349 15759 45108	24002 13462 37464	18146 10537 28683	
Wall (<i>RF</i> I)	風上(W) 風下(L) 同時(C)	180	9286 4643 4643	13705 2195 15900	29617 12489 42106	- 4389 - 6853 -11242	24979 14808 39787	48839 24420 73259	47276 22012 69288	40386 18002 58388	32116 13610 45726	44023 23638 67661	36004 20193 56197	27219 16058 43277	
屋根+壁	風上(W) 風下(L) 同時(C)	120	8725 15010 23735	10514 11678 22192	19720 17771 37491	- 1496 5265 3769		31246 25659 56905	30608 26821 57429	26467 23681 50148	21288 19139 40427	27648 22248 49896	22367 16727 39094	16737 11416 28153	
Roof +Wall (<i>RF</i> Ⅲ)	風上(W) 風下(L) 同時(C)	180	13088 22515 35603	15770 17518 33288	29580 26656 56236	-2244 7897 5653	-22996 -15070 -38066	46869 38488 85357	45913 40233 86146	39700 35521 75221	31932 28709 60641	41472 33371 74843	33551 25090 58641	25105 17376 42481	

表-5.14 設計用風圧荷重による撓みの計算値(三鉸節の条件) Table 5.14 Calculated deflection due to design wind load (as three hinged frame condition).

.

-1-

注) q=Velocity pressure.

表-5.15 総合試験における積雪荷重による実測撓み(ð₁:×10-³cm)

Table 4.15 Observed deflection to snow load at complete assemblies test (δ_1 : ×10⁻³cm).

マム記号	測点記号N	Measuring			x Vertic	方 al dire	向 notion			y Horizon	方 「	句 oction
Mark	測定断面 Section	point	1 K	1 S	1	2	3	4	5	1	4	5
屋 根	集成材 Laminated timber frame	L 1 * L 2 * L 3 L 4 M M*			-260 -371 -322 -200 -288 -316			-298 -391 -437 -40 -292 -345	- 250 - 367 - 384 - 257 - 315 - 309	126 - 426 - 96 - 188 - 98 - 150	99 123 137 357 178 111	53 - 6 -29 15 8 24
全 面 <i>RS</i> I	パネル Panel	12* 34 M M'	604 604	 - 394 - 394 		-2323 -2560 -2442 -2323	-2396 -2321 -2359 -2396					
屋	集成材 Laminated timber	L 1 * L 2 * L 3 L 4			746 303 364 28	3064 2636 539 5	-2950 -2776 - 496 36	659 397 26 5	540 395 268 8	473 920 75 8	249 153 139 11	$10 \\ 45 \\ -19 \\ -12$
低半	frame	M M*			— 360 — 525	— 1559 — 2850	—1547 —2863	256 528	299 468	-133 -224	138 201	6 28
面 RSII	パネル	12 * 34 M	-931 -151 -541			-4423 -137 -2280	-4541 -77 -2309					
	Panel	M'	-931	- 793		-4423	-4541					
屋 根 1/4	集成材 Laminated	L 1 * L 2 * L 3 L 4			-329 -112 -184 41	68 87 106 68	-2794 -2734 - 647 - 53	162 200 209 285		803 196 224 560	-283 -356 -358 -365	307 336 398 384
面(風	frame	M M*			146 221	82 78	— 1557 — 2764	214 181	—513 —662	68 304	341 320	356 322
	パネル	12 * 34	691 95	- 100 - 45		77	-4421 - 208					
RSⅢ	Panel	M M'	393 691	- 73 -100		75 77	-2315 -4421					
屋根(4)面(風下側)	集成材 Laminated	L 1 * L 2 * L 3 L 4				- 2931 - 2674 - 638 - 50	105 115 91 68	640 520 456 271	202 233 231 246	-413 -850 -83 557	385 430 481 389	300 355 382 382
	frame	M M*			-163 -194	-1573 -2803	95 110	-472 -580	228 218	-197 -632	421 408	355 328
	パネル	12 * 34	-164 -107			- 4375	94 54					
KSIV	Panel	M M'	-136 - 164	-371 -587	·	- 2308 - 4375	74 94					

注) 積雪荷重 Snow load: RSI≒150 kg/cm² RSII, III, IV≒300 kg/cm²
 δ₁=最大荷重における実測値 Observed deflection at maximum load of test.
 M=Mean, M*=(L₁*+L₂*)/2, M'=12*

林業試験場研究報告 第158号

表-5.16 総合試験における積雪荷重による補正撓み(δ2:×10-3cm)

Table 5.16 Corrected deflection to snow load at complete assemblies test (δ_2 : ×10⁻³cm).

区分記号	測点記号	Measuring point			x Vertio	方 cal dire	向 ection			y Horizo	方 ntal dir	向 rection
Mark	測定断面 Section		1 K	1 S	1	2	3	4	5	1	4	5
屋根	集成材 Laminated timber frame	L 1 * L 2 * L 3 L 4 M M*			380 535 442 310 417 458		- 1525 - 2313 - 2348 - 1510 - 1924 - 1919	- 338 - 448 - 477 - 77 - 335 - 393	-250 -392 -417 -267 -332 -321	137 667 102 297 232 265	165 207 202 230 201 186	57 22 42 8 0 18
重 RS I	パネル Panel	12 * 34 M M'				- 2505 - 2728 - 2617 - 2505	-2612 -2572 -2592 -2612		. 1			
 屋 根	集成材 Laminated、 timber	L 1 * L 2 * L 3 L 4					-3406 -2952 -576 42 -1723	-902 -490 288 -22 -282	-614 -458 -294 32 -334	404 	478 250 146 44 230	-78 42 -22 8 -13
半	frame	- M* -			-909	-3118	-3179	- 696	-536	-348	364	-18
面 RSII	パネル Panel	12* 34 M M'				- 4774 - 164 - 2469 - 4774	-4912 - 114 -2513 -4912		-			
屋 根 1/4	集成材 Laminated timber	L 1 * L 2 * L 3 L 4			-408 -114 -214 - 46	60 100 120 92	3032 2974 760 82	254 282 278 366	854 708 588 322	950 334 182 718	- 438 - 512 - 702 - 270	- 498 - 480 - 560 - 544
血 (風 -	frame	M*			-173 -261	93 80	-1712 -3003	295 268	-618 -781	20 308	-481 -475	-521 -489
上 側) PSm	パネル	12 * 34	-760 -128	106 44		102 -80	-4814 - 224					
КЭШ	Panel	M M'		— 75 —106		91 102	2519 4814		I			
屋 根 1/4	集成材 Laminated	L 1 * L 2 * L 3 L 4				3072 2794 376 54	72 110 106 84	- 700 - 566 - 502 - 332	242 256 266 298	-412 -738 -16 -650	518 492 520 478	378 454 422 256
面(風)	frame	M M*			-208 -271	- 1574 - 2933	93 91	-525 -633	266 249		502 505	378 416
風下	パネル	12 * 34	-226 -118	722 152		-4592 - 246	90 78					
RSIV	Panel	M M'	-172 - 226			-2419 -4592	84 90		,			

注) 積雪荷重 Snow load: RS I ≒150 kg/cm², RS II, III, IV ≒300 kg/cm²
δ₂(in RS I) = (δ₁-δ_B)×5/3 δ₁=Observed deflection at maximum load of test.
δ_B=Observed deflection at 2/5 maximum load of test.
δ₂(in RS II, III, IV) = (δ₁-δ_C)×2
δ_C=Observed deflection at one half maximum load.
M=Mean, M*=(L₁*+L₂*)/2, M'=12*

-128 -

								· ·					
区分	記号		垂 Vertical	直 撓 deflection	み (10 ⁻³ cm)			水平	売 み H	orizontal	deflection	(10 ⁻³ cm)	
Ma	rk	δ_{x_1}	δ_{x_3}	δ_{x_5}	δ_{x_2}	δ_{x_4}	δ_{y_1}	δ_{y_3}	δ_{y_5}	δ_{y7}	δ_{y_2}	δ_{y_4}	δ_{y_6}
三 鉸 節	(計算値)δ₀	-102101	-54743	-25632	-54743	-25632	0	-16972	-23887	-25681	16972	23887	25681
	集成材 1 δL1	- 260	- 1395	- 250	-1409	- 298	126		53			99	
積雪荷重	集成材 2 δL2	- 371	-2111	- 367	-2209	- 391	- 426		- 6			123	
実測値	集成材 3 δL3	- 322	-2129	- 384	-2420	- 437	96		- 29			137	
Observed value in RS I test	集成材 4 δL4	- 200	-1354	- 257	-1289	- 40	- 188		15			357	
	δ_1	- 347	-2120	- 376	-2315	- 414	- 165		- 18			130	
補正值 Corre	ected value δ_2	- 489	-2331	- 405	-2561	- 463	— [·] 385		— , 32			205	
δ_1/δ_0		0.003	0.039	0.015	0.040	0.016			0.001			0.005	
$\delta_2/$	δ_0	0.005	0.043	0.016	0.047	0.016			0.001			0.009	

表-5.17 積雪荷重による実測撓みと三鉸節条件での計算撓みの比較(RSI)

Table 5.17 Summary of observed deflections due to simulated snow load and comparison of those

with calculated value as three hinged frame condition (RSI test).

注) δ_0 = Deflection calculated as three hinged (\overline{EI} =125×10⁶kgcm²).

 $\delta_{L_1}, \delta_{L_2}, \delta_{L_3}, \delta_{L_4}$ = 最大試験荷重(150 kg/m²)における実測値

Observed deflection of laminated timber frame at maximum load (150 kg/m^2) of test.

 $\delta_1 = (\delta_{L2} + \delta_{L3})/2$

 $\delta_2 = \delta_1$ の補正値 $\delta_2 = (\delta'_{L_2} + \delta'_{L_3})/2$

 $\delta'_{L_2} = (\delta_{L_2} - \delta_B) \times 5/3 \qquad \delta'_{L_3} = (\delta_{L_3} - \delta_B) \times 5/3$

 δ_B =最大試験荷重の 2/5 における実測撓み Observed deflection at 2/5 maximum load of test.

 δ_{x_1} , δ_{y_1} = Deflection in direction of 1st subscript at point of 2nd subscript, respectively.

129

は風上側に変位した場合をあらわしている。

i) 屋根全面荷重 集成材部位における最終荷重 (≒150 kg/m²) に対する実測撓みと,この骨組み を三鉸節条件として求めた計算撓みを比較すれば表-5.17 のごとくなる。まず最初に,個々の集成材骨組 みの実測垂直撓みをみれば,多少の例外はあるが,風上側と風下側の変位は比較的良好な対称性を示し, 通直登梁の中央にあたる測点2,3の撓みは,頂部の測点1や肩部の測点4,5の撓みにくらべいちじる しく大きいが,骨組みの配置についてみれば妻側の集成材骨組み L_1 , L_4 の撓みは,中央近くの L_2 , L_3 の撓みにくらべやや小さくなっている。したがって,いま,中央部の骨組み L_2 と L_3 における実測撓み の平均値を δ_1 , さらにその換算補正値を δ_2 とし,計算撓み δ_0 に対するこれらの値の比率をとれば実測 値がきわめて小さく, δ_2 の値は測点1では計算値のわずか 0.5% 程度,測点2,3では約 4.5%,測点 4,5では約 1.5% 程度となっている。なお,測点2,測点3の δ_1 の値はみかけ上約 23.1 mm,21.2 mm 程度となっているが,頂部および肩部も同時に垂直撓みを生じているので,これらを,

 $\Delta \delta_{x_2} = \delta_{x_2} - \frac{1}{2} (\delta_{x_1} + \delta_{x_4}), \quad \Delta \delta_{x_3} = \delta_{x_3} - \frac{1}{2} (\delta_{x_1} + \delta_{x_5})$

より補正すると、絶対変形量は風下側約 19.3 mm、風上側約 17.6 mm となる。また、スカーフ剝離を 生じた部位の近くにあたる L3 の測点2の実測垂直撓みは他の測点の 撓みよりやや大きく 24.2 mm と なっている。つぎに、水平撓みの実測値をみると、垂直撓みの場合にくらべ不安定で、部材接合条件や荷 重伝達方式に検討の余地を残している。すなわち、測点4の撓みはすべて風下方向に生じているが、反対 側の測点5 や頂部の測点1の撓みは各骨組みごとに不規則な値を示している。さらに、パネル部位の垂直 撓みを補正値 δ_2 についてみると、平均的には集成材部位より大きな値を示し、その最大値は34部位にお ける測点2の約 27.3 mm である。いずれにしても約 150 kg/m² で、この程度の撓みを生ずるので、300 kg/m² に対するみかけの最大撓みは恐らく 50 mm をこえるかもしれない。

ii) 屋根半面荷重 この場合はスカーフ剝離を生じた方の屋根を避け、 * 印を付した集成材骨組み $L_1 \ge L_2$, すなわち、分解試験のさいの骨組みおよびパネルが関与する区間のみに約 300 kg/m² に相当 する砂袋を積載した。表-5.16に示す補正撓みをみれば、集成材骨組み L_1 , L_2 における 風上側と風下側 の垂直撓みの対称性は良好であるが、 L_3 および L_4 ではあまりよくない。骨組みの配置についてみれば、 直接荷重を積載しない建物部分の拘束をうけるためか、 L_1 の撓みは屋根全面の場合とことなり、 L_2 の撓 みよりむしろ大きくなり、 L_3 、 L_4 の順に減少し、 L_4 では測点によっては上向きの撓みに変わっていると ころもある。 したがってこれらを単純に平均するのは意味がないので、 $L_1 \ge L_2$ の撓みのみを平均して M^* とした。最大垂直撓みは L_1 における測点2での約 34.6 mm である。水平撓みについてみれば、測 点4 はすべて風下側に変位しているが、測点1および5 は不規則な変位を示している。なお、荷重を直接 うけるパネル部位の垂直撓みはきわめて大きく、その最大値は測点3 での約 49.1 mm である。

iii) 屋根 1/4 面荷重(風上側) 前項の屋根面の風上側にのみ約 300 kg/m² に相当する砂袋を積載 した場合であるが、この場合の撓み測定結果は前項の場合とやや異なっている。すなわち、集成材部位で の垂直撓みをみれば、直接負荷された風上側の測点 3 の撓みは屋根半面の場合とほぼ同様の傾向を示し、 L₁、L₂、L₃、L₄ の順に減少しているのに対し、測点 5 の撓みは各骨組みとも屋根半面の場合よりかなり 大きくなっているが、各骨組み間の差がそれほどはげしくない。また、直接負荷されない風下側の測点 2 および 4 ではすべて上向きの撓みに転じ、かつ、各骨組みともあまり大差のない撓みを生じている。下向 きの最大撓みは L₁ の測点 3 での約 30.3 mm、上向きの 最大撓みは L₄ の 測点 4 での約 3.7 mm であ

- 130 -

る。つぎに、水平撓みをみれば、頂部の測点1は不規則な変位をしているが、肩部にあたる測点4および 5はすべて荷重を加えた風上側に変位し、その撓み量も平均的にはあまり差がみうけられない。なお、直 接荷重をうけるパネル部位での測点3の撓みはいじるしく大きく,屋根半面の場合に近似し,約48.1 mm の値になっている。

iv) 屋根1/4 面荷重(風下側) この場合は荷重面を風下側に変え、約 300 kg/m² に相当する砂袋 を積載したが、前項の場合とほぼ対称の結果となっている。すなわち、集成材部位についてみれば、直接 負荷される風下側の測点2の垂直撓みは、 L_1 , L_2 , L_3 , L_4 の順に減少しているが、測点4では各骨組み 間の差はそれほどはげしくない。また、直接荷重をうけない風上側の測点3および5では前項の場合と同 じく上向きの撓みに転じ、かつ、各骨組み間の差はあまりみとめられない。下向きの最大撓みは L₁の測 点2での約 30.7 mm で、上向きの最大撓みは L4 の測点5 での約 3.0 mm である。水平撓みについて も,頂部の測点1は不規則な変位を示しているが,肩部の測点4および5はすべて荷重を加えた風下側の 方向に変位している。また、直接荷重をうけるパネル部位の測点2の垂直撓みはいちじるしく大きく、約 45.9 mm となっている。

6. 考 察

以上の結果からこのB型試験建物が設計用風圧荷重(壁面に加わるはり間の方向の水平力)および積雪 荷重に対しどの程度の剛性を期待できるかについて検討するとともに前報A型建物の場合との差異につい ても考察を加えてみたいと思う。

6.1 風圧荷重に対する耐力について とくに壁面に加えた水平力に対し各種の条件で試験をおこな った結果、まず、集成材骨組みとしての登梁にあっては、A型と同様のヒンジ条件を頂部および両脚部に あたえたにかかわらず、その三鉸節条件としての計算撓みの平均75%にすぎない実測撓みに終わったこと に注目したい。A型の場合はさきに述べたごとく約97%となり、きわめて良好な適合度を示していた。こ の骨組みがA型のそれと異なっている点は第一にその部材曲げ剛性がいちじるしく小さいことである。つ まり、数値的にはA型で 333×10⁶kgcm であるのに対し、このB型では 125×10⁶kgcm となりA型の約 37.5%にすぎない。 ところが, 骨組み自重では脚部の1個のピンに加わるものがA型で 28.2 kg である のに対し、B型では 41.1 kg と約65%ほど大きくなっている。このことは使用したピンの回転摩擦が増 大するのに骨組み部材の剛性が1/3近くに低下し、ますます滑節点の条件を悪くしているように見受けら れる。この間の傾向を数値的に明らかにするためにはかなり精度の高い実験が必要と思われるが、これら 一連の試験を実施した経過からみて、部材剛性の大小と骨組み自重とがかなり強い影響を使用節点にあた えているように思われる。

さらに、頂部および脚部の2か所をボルト接合した場合は、各測点の水平撓みは平均的にみて三鉸節条 件での計算値の約24%となり、同様の比率をA型についてみれば約40%程度であった。この骨組みに床パ ネル、リブ付パネルをとりつけてもほとんど変化なく、壁パネル装着時で約18%、その後、天井パネルや 屋根パネルをとりつけてもほとんど効果がみられないが、妻および間仕切りパネルをとりつけると急に3 %にまで減少する。このことはいかにこの建物がその剛性の大部分を妻パネルと間仕切パネルに依存して いるかを物語っている。したがって、その意味ではこの集成材骨組みの剛性の低さもあまり問題ではない ようであるが、後に述べる積雪荷重に対してはかなりの問題があるようである。いま、最終剛性を基準に

とれば、ボルト接合における骨組み剛性負担率は約11%、壁パネルのとりつけまでをふくめた場合は約15 %となるが、その後、天井および屋根パネルをとりつけてもほとんど拘束効果はないので、妻および間仕 切りパネルの剛性負担率は約85%ということになる。これに対しA型建物では、骨組みの剛性負担率は大 約35%であり、壁パネルなどの拘束効果はほとんど認められないので、妻パネルの負担率は約65%程度と いうことになる。なお、これらの諸関係を風上下同時荷重における 100 kg あたりの実測水平撓み量でみ ると、 骨組みの 頂点では 三鉸節条件の場合 156.6 mm (H_0)、 ボルト接合条件に 変えた場合 58.9 mm (RB_2)、壁パネルをとりつけた場合 43.6 mm (RW)、屋根パネルをとりつけた場合 42.8 mm (RR)、妻 および間仕切りパネル装着時でわずか 6.6 mm (RG) となる。 また、高さ 1.78 m における風上下側両 荷重点の平均撓み量は 107.9 mm (H_0)、 40.9 mm (RB_2)、29.4 mm (RW)、29.2 mm (RR)、4.6 mm (RG) と低減している。この両荷重点における水平撓みの平均値を用いて、妻および間仕切りパネル装着 時の壁面の角度変化を計算すると 100 kg あたり約9分となるが、A型建物では約4分となる。なお、わ ん曲登梁と 通直登梁の接する 肩部の接合についてはできるだけ 剛節点に近づけるよう 配慮したが、工作 法、接合金具、部材重量などの点で多少の問題は残るかもしれない。しかし、この場合の部材剛性が相対 的にかなり低いので、剛節点条件からいちじるしくかけ離れているとは思われない。

つぎに、この種荷重に対して問題となるのは壁パネルである。建物全体としての変形ではあまり問題は ないが、壁パネルに加わる風圧を 局部局にみると約 12.5 mm (*q*=180 kg/m²) ていどのパネル 中央の撓 みが計算される (風上側)。この値はスパンの約 1/200 であり、まず十分な剛性とみてよいように思われ る。

6.2 積雪荷重に対する耐力について このばあいはもっぱら屋根面の垂直撓みとビームに相当する 登梁の強さが問題となる。前述の試験結果からも明らかなように、この通直登梁の中央撓みの最大値は積 雪荷重 300 kg/m² と仮定した場合で約 30 mm を示している。しかも、屋根全面荷重の場合 150 kg/m² で一つの登梁のスカーフ接手部に破損を生じて試験を中止している。これは登梁のスカフ接着法に問題が あると同時に梁そのものの断面寸法にも強度的にみて不足な感じがする。また、その撓み 30 mm ともな ると、木造建物の耐力梁での制限撓み 20 mm をかなり越えるので部材の所要剛性をみたしていないとい う判断もでてくる。このようなことからこの建物の登梁の部材剛性および強度は少なくとも多雪地域での 積雪荷重に対して十分な耐力を有しているとはいえないことになるわけである。

つぎに, 天井パネルと屋根パネルとで支えられている登梁の中間部パネルの撓みは, 梁の撓みを含めて 約 50 mm にも達し, パネルだけの撓みでは約 20 mm となっているので, パネルについても, 登梁の間 隔 2.56 m は若干広すぎるように思われる。

以上の理由から、この建物の積雪荷重に対する耐力を十分なものとするためには、この通直登梁の中央 にもう一つの補助梁をあたえる必要あるのではないかと思われる。これは現在の登梁の断面寸法を変えな いばあいであるが、かりに、この断面を変えて有効な断面2次モーメントを増大したとしても、パネルの 剛性上登梁間隔を現在のまま(2.56 m)にしておくことは不適当のように思われるので若干この心巨を短 縮した方がよいようである。

6.3 積載荷重に対する床パネルの剛性 前報のA型と同様,その積載荷重を 180 kg/m² と予想し て、この床パネルが床梁に支持されているものと 仮定して、その中央撓みを計算すれば約 16 mm とな る。これはスパンの約1/160にあたっているが、実際には床パネル相互の連結も不完全ながら存在するし、 また床梁との接合もボルトによるものであるから支持点での回転拘束も若干期待できるので、まず床パネルとしての所要剛性はみたしているものと判断してもよいと思われる。

以上のほかにも数多くの検討すべき問題点はあると思われるが,ここではむしろこの試験での実測値を 整理して提供することにより実際にこの関係方面の方々のご批判を仰ぎたいと考え,大部分の意見をさし ひかえることとした。

むすび

林野作業員宿舍として設計されたA,B2型のモデル建物についての実大剛性試験は一応本報告によっ て終了する。しかし,まだ,集成材骨組みの脚部接合条件がその骨組みの剛性に与える影響や,パネルの 筋かい効果,ならびに骨組みの破損の発達形式など多くの問題が残されている。とくに,破壊試験を実施 しえなかったことは,設計資料を作成する上でかなり大きな欠陥となっていることも疑いのないところで ある。その意味において,現在,別個に集成材の実大骨組みについて上にのべた各種の条件を検討すると ともに破壊試験を実施中である。したがって,この試験が終了したうえで,改めて木造組立て家屋の構造 強度に関する一応の資料を完成したいと考えている。筆者らは,これら一連の試験を通じて,今後,部材 設計や接合部の設計についての実際的な問題点が明確になることを望んでいる。

この稿を終わるにあたり、これまで熱意あるご援助とご指導にあたられた前木材部長 小倉武夫氏に対し、深く謝意を表したいと思う。

文 献

- 1) 沢田 稔・山井良三郎・高見 勇・近藤孝一・杉山英男:木造組立家屋に関する研究,第2報,林 試研報,152,(1963)
- 2) 上村 武・梅原 誠:木造組立家組に関する研究,第1報,林試研報,152,(1963)
- 3) 集成材研究班:集成材に関する研究(第1報),林試研報,101, pp. 101~176 (1957)
- 4) _____: 集成材に関する研究(第2報),林試研報,109, pp.1~76(1958)
- 5) Office of The Housing Expediter and Housing and Home Finance Agency: Manual.on Wood Construction for Prefabricated Houses. U.S. Gov. Printing Office, (1947)
- ASTM : Symposium on Full-Scale Tests on House Structures, Special Tech. Pub., 210, (1957)
- 7) WILSON, T.R.C. : The Glued Laminated Wooden Arch, U.S.F.P.L. Tech. Bul., 691, (1939)
- 8) FREAS, A.D. & M.L. SELBO : Fabrication and Design of Glued Laminated Wood Structural Members, U.S.F.P.L. Tech. Bul., 1069, (1954)
- 9) DIETZ, A.G.H.: Engineering Laminates, (1949)
- 10) HOLTMAN, D.F.: Wood Construction, (1929)
- 11) HANSEN, H.J.: Timber Engineer's Handbook, (1948)
- 12) 日本建築学会:木構造設計基準·同解説,(1961)
- 13) 日本建築学会編:建築学便覧,(1956)
- 14) 林業試験場編:木材工業ハンドブック,(1958)

林業試験場研究報告 第158号

Studies on Prefabricated Wooden Houses 3. Full-scale flexural rigidity test of model house (Type B) for forest-workers.

Minoru SAWADA, Ryôzaburo YAMAI, Isami TAKAMI, Kôichi KONDO and Hideo SUGIYAMA

(Résumé)

The main purposes of this report are to obtain technical data for the reasonable design and the evaluation of strength and rigidity of the prefabricated wooden house in succession of previous reports. Full-scale tests were conducted on the B-type house designed for forestworkers as shown in Plate 1.1 and Figs. 2.1 to 2.2, respectively. The tests on various elements, components (partial assemblies) and complete assemblies were all interrelated, the sequence of the loading phases for the structural tests and the various test conditions were presented in Table 1.1. The methods of flexural rigidity tests on the various elements, the partial assemblies tests due to horizontal force and the complete assemblies tests due to simulated wind loads and simulated snow loads (sand bags) were shown in Figs. 4.1 to 4.7, Fig. 11 and Fig. 13. The partial assemblies tests were carried out on one-half house frame between the partition panel and the gable panel at one side. The design wind loads and the test wind loads on the complete house were shown in Fig. 3.1 and Fig. 5.12, respectively. The simulated snow loads were applied in 10 per cent increments of the design snow load equivalent to 300 kg per square meter of horizontally projected roof area. But, at the symmetrical loading on the entire surface of roof plane, the application of load was stopped at 50 per cent design snow load (approximately 150 kg/m²) because of the sudden failure at scarf part of one straight laminated beam as shown in Plate 5.10. In the next test phases of loading on one-half roof plane, the application of load was increased to 100 per cent design snow load (approximately 300 kg/m²). The main results obtained from these tests may be summarized as follows :

1) The results of the flexural rigidity tests on the various elements were presented in Table 4.1 to 4.7. The mean value of apparent flexural rigidity of curved and straight laminated beam (\overline{EI}) was estimated to be 125×10^6 kg·cm²; this value was used in calculation of deflections of test house frame.

2) The results of the partial assemblies tests are summarized as follows :

i) The mean value of ratios of the observed horizontal deflections to the calculated deflections under three-hinged-frame condition was about 0.75 as shown in Table 5.2.

ii) The observed rigidity of the bolted laminated timber frame subjected to horizontal force in span direction was about 3.0 times the observed rigidity under three-hinged-frame condition (RB_2/H_0 in Table 5.4).

iii) When the floor panels, the panels with rib, the wall panels the ceiling panels and the roof panels were successively fastened to this bolted frame, the effective increase of rigidity to horizontal force was little recognized $(RF/H_c, RL/H_c, RW/H_c, RC/H_c, and RR/H_c$ in Table 5.2).

iv) When the assembly of one-half house frame was completed with the fastening of the gable panels and the partition panels, the horizontal movements of the house frame were remarkably restricted, the mean of ratios of the observed values to the calculated values was only about 0.03 (RG/Hc in Table 5.2). In other words, as shown in Table 5.4,

the rigidity of frame to horizontal force was increased up to about 25 times the observed value under three-hinged-frame condition. This fact suggests that the gable and partition panels acted as effective braces against the horizontal movement of house frame.

3) The results of the complete assemblies tests are summarized as follows :

i) The rigidity of complete house frame for the horizontal force on wall planes was considerably increased, the mean of ratios of observed deflections to calculated deflections as three-hinged-frame condition was only about 0.02 (Table 5.13), and this value was comparatively near to the value in the patial assemblies tests. But, for the outward thrust test on roof panels, the values of ratios were changeable, and a stable relation between the observed vertical deflections and the calculated deflections was not recognized. For the combined loading of the horizontal force on wall panels and the outward thrust on roof panels, the foregoing tendencies were recognized as shown in the same Table.

ii) At the application of sand bags on the entire surface of roof plane, the load could not be increased over 50 per cent design snow load because of the delamination at scarf part of one straight laminated beam, but the largest observed deflection reached about 24 mm at the mid-span of straight laminated beam and about 26 mm at center part of roof panel. At the application of 100 per cent design snow load on one-half roof plane, the largest observed deflection reached about 30 mm at mid-span of straight laminated beam and about 50 mm at center part of roof panel as shown in Tables 5.15 and 5.16. At the application of 100 per cent design snow load on the windward side or leeward side of the one-half roof plane, the measuring points at loading side were displaced dcwnwards, and those at opposite side were displaced upwards. These results suggest that this test house may not be suitable for severe snow loads.

The evaluation of strength and rigidity of house structures is difficult because of variations in materials, workmanship, joint condition, method of construction, and many other factors. In tests hitherto the flexural rigidity of test house frame to design load was examined mainly, but in further tests it may be necessary to obtain more information on the rupture tests of house frame subjected to horizontal and vertical forces.

2.1 B型 試験 家屋 Test house (Type B).

4.1.1 わん曲登梁の外観 Curved laminated beam.

4.1.2 わじ曲登梁の曲げ剛性試診状況 General view of flexur.l rigidity test of curved laminated beam.

4.1.3 同端部支持点(自由) End support (free).

4.1.4 わん曲登梁の凸面にあらわれた 損傷

Failure on convex surface of curved laminated beam before test.

4.2.3 同表面における欠点 Defects on surface of beam.

4.2.1 通直登梁の外観 Straight laminated leam.

4.2.2 通直登梁の曲げ剛性試験状況 General view of flexural rigidity test of straight laminated beam.

一図版一

4.6.1 屋根パネルの外観 Roof panel.

4.7.2 リブ付パネルの曲げ剛性試験状況 General view of flexural rigidity test of panel with rib.

4.6.2 屋根パネルの曲げ剛性 試験状況 General view of flexural rigidity test of roof panel.

4.7.1 リブ付パネルの外観 Panel with rib.

4.7.3 頂部の垂直撓みの測定方法 Measuring method of vertical deflection at top point.

5.1.1 試験家屋の骨組 5.1.1 Framework of B-type test house.

5.1.2 試験家屋の骨組 Framework of B-type test house.

5.2.2 肩部のボルト接合 Joint for curved laminated beam & straight laminated beam.

5.2.1 総合試験における脚部の接合 Base joint at complete assemblies test (Foundation pile & curved laminated beam).

5.2.3 わん曲登梁とリブ付パネルの接合 Joint for curved laminated beam & panel with rib.

5.3.1 頂部の接合概況 Top joint.

5.3.2 頂部の接合概況 Top joint.

5.4.2 壁パネルのとりつけ状況 (窓枠パネル) Fastening wall panel (window panel).

5.3.3 頂部の接合概況 Top joint.

5.4.3 天井パネルのとりつけ状況 Fastening ceiling panel.

5.4.1 壁パネルのとりつけ状況 Fastening wall panel to curved laminated beam.

5.4.4 屋根パネルのとりつけ状況 Fastening roof panel.

5.4.5 妻パネルのとりつけ状況 Fastening gable panel.

5.5.1 頂部ヒンジ(三鉸節骨組用) Top hinge for three hinged frame.

5.5.2 脚部ヒンジ(三鉸節骨組用) Side view of base hinge for three hinged frame.

5.5.3 三鉸節条件における肩部の接合 Joint for curved laminated beam & straight laminated beam under three hinged frame condition.

一図版一

一図版一

林業試験場研究報告 第158号

5.6.1 頂部のボルト接合 Top joint under bolted frame condition.

5.7 集成材骨組の加力方法 Manner of applying horizontal loads.

5.6.2 脚部のボルト接合 Base joint under bolted frame condition.

5.8.1 変形測定法 (T点) Measuring method of vertical deflection at point T.

5.6.3 ボルト接合条件における肩部の接合 Joint for curved laminated beam & straight laminated beam under bolted frame condition.

5.8.2 変形測定法(U'点)
 Measuring method of vertical deflection at point U'.

5.8.3 変形測定法 (U 点) Measuring method of vertical deflection at point U.

5.9 壁パネル装着時の加力方法 (RW) Manner of applying horizontal loads under RW test condition.

5.10 通直登梁のスカーフ剝離(積雪試験) Delamination at scarf part of straight laminated beam in snow loads test.

5.11.1 積雪試験(屋根全面) Location of sand bags on entire roof surface (*RSI* test).

5.11.2 積雪試験(砂袋の積載) Simulated snow loads.

5.12.1 集成材骨組の頂部の変形測定法 Measuring method of horizontal & vertical deflections at top point of laminated frame.

一図版一

5.12.2 パネル部位における頂部の変形測定法 Measuring method of horizontal & vertical deflections at top margins of ceiling panels.

5.12.4 肩部における変形測定法 Measuring method of horizontal & vertical deflections at joining point for curved & straight laminated beams.

5.12.6 天井パネル中央における変形測定法 Measuring method of vertical deflection at center point of ceiling panel.

5.12.3 通直登梁の中央における変形測定法 Measuring method of horizontal & vertical deflections at center of straight laminated beam.

5.12.5 脚部における変形測定法

Measuring method of vertical deflection at foot point of curved laminated beam.

5.12.7 窓枠下端部における変形測定法 Measuring method of horizontal & vertical deflections at lower margin of window frame of wall panel.