林試研報 Bull. For. & For. Prod. Res. Inst. No. 329, 1984

# (研究資料)

走査電子顕微鏡による木材および化学処理木材の観察

加藤昭四郎心•黒須博司掌

Shôshirô Katô and Hiroshi Kurosu: Observation of the Wood and Chemically Treated Wood with the Scanning Electron Microscope (Research note)

**要** 旨:走査電子顕微鏡を用いて種々の形態の木材や化学処理木材を観察し,次のような結果を得た。

木材組織については、倍率を変化させることによって、3断面の同時観察・撮影から壁孔のトール ス・マルゴやミクロフィブリルに至るまで、広範囲の観察が可能であった。腐朽木材中に侵入・繁殖 している菌糸や、木材組織に充填している内容物およびその溶脱についても観察できた。

木材を薬品や樹脂で処理したときのそれらの流動・充填・沈着状況が観察できた。 木材を炭化しても、組織構造はかなり維持されていることがわかり、このことは出土木炭の樹種鑑

定に利用された。

木粉を脱リグニン処理すると、リグニン含有率の高い細胞コーナーの消失が顕著であった。 セルロース繊維にメチルメタクリレートをグラフト共重合すると、ポリマーの結合や沈着による繊 維の表面構造や形態の変化が観察された。

## Iはじめに

走査電子顕微鏡 (Scanning Electron Microscope,以下 SEM と略記する) によって撮影された写真 は、 焦点深度が深く、 試料表面の凹凸像が立体感に富んでいるので、 木材の観察にも 広く使用されてい る。当初はチロースの観察など木材の 組織構造的研究への 応用が主であったが<sup>133</sup>,その後木質材料破壊 の観察<sup>39</sup>,木材の破壊面の観察<sup>49</sup>,木材の乾燥による落ち込みの観察<sup>59</sup>,木材接着層の観察<sup>69</sup>,WPC 内ポ リマーの観察<sup>71</sup> など、木材研究全般に応用されるようになった。 当場においても、 昭和 49 年度に明石製 作所製 MSM-2,昭和 53 年度に日本電子製 JSM-35 C が納入され、有効な研究手段として利用されてい る。

本報告は、種々の形態の木材および化学処理木材について観察した結果をまとめたものである。

| 山失 |
|----|
| 山失 |

1. SEM装置

(1)原理

加速された電子が試料に当たると、電子は試料内に侵入してその構成原子と衝突を繰り返して散乱し、 やがて熱となり消滅する。衝突のたびに2次電子やその他の放射線を発生するが、形態の観察には2次電 子が利用される。2次電子のエネルギーは数十電子ボルトであるため、試料内部で発生したものは表面に

1983年12月8日受理 (1)(2)林産化学部 - 178 -



達しえずに消滅する。それで,表面で 発生した2次電子だけが検出される (図1)。

(2)構造

SEM の原理を図2に示す<sup>8)</sup>。

鏡筒最上部の電子銃から放出された 加速電子は鏡筒内を下に進み,2~3 段のコンデンサーレンズにより100Å 以下に収束される(電子プローブとい う)。この電子プローブは走査用コイ ルによって試料表面を2次元的に走査 する。試料表面から発生する2次電子 は、シンチレーター、光パイプ、光電

子増倍管からなる検出系を経て電気信号にかえられ、増幅されて電子プローブと同期して走査する陰極線 管 (CRT)のグリッドに送られる。CRT のビームは輝度変調され、 テレビと同様な 方式により2次元的 な走査像が得られる。

像の倍率は、試料面上の走査幅と CRT の走査幅との比で決められる。通常試料面上の走査幅を変化さ せることにより、数十倍から十万倍程度の範囲で可変である。

(3) 使用装置

使用した SEM は,明石製作所製 MSM-2 と日本電子製 JSM-35 C である。それらの主な仕様の比較 を表1 に示す。



|             | <b>M</b> S M-2            | J S M-35 C                |
|-------------|---------------------------|---------------------------|
| 保証分解能 (Å)   | 300                       | 70                        |
| 倍率(倍)       | 30~40,000                 | 10~180,000                |
| 加速電 圧 (kV)  | 15                        | 0~39                      |
| 観察用走査像(インチ) | 7(兼用)                     | 10                        |
| 撮影用走査像(インチ) | "                         | 5                         |
| 電源          | 100 <b>V,</b> 10 <b>A</b> | 100 <b>V,</b> 20 <b>A</b> |

表1. MSM-2 と JSM-35C の 仕 様 の 比 較

#### 2. 観察用試料の作製

試料の作製は、乾燥一切削一蒸着の順序で行ったが、試料によっては、乾燥一樹脂包埋一切削一脱包埋 一蒸着の順序で行った。

(1)乾燥

風乾あるいは臨界点乾燥(図3)を行った。臨界点乾燥装置は、日立工機製 HCP-1 を使用した。

(2) 樹脂包埋

モノマーはエチルメタクリレート、重合開始剤は過酸化ベンゾイルを用いた。

(3) 切

薄切片は、ミクロトームにガラスナイフをセットして 0.5~1μの厚さに切削して作製した。

ガラスナイフの作成:厚さ5~6mmのガラス板を約10cm角の大きさに切り,洗剤で表面の汚れを 取り除いて保存しておく。ガラス板をナイフメーカーでくわえ,真中の位置にガラス切りで10~15mm の傷を入れ,軽く締めつけて亀裂を入れる。この亀裂を出発点として,ゆっくりと中断せずにガラスを割 っていく。

(4) 脱包埋

アセトンで樹脂を溶解して脱包埋した。

削

(5) 蒸 着

明石製作所製真空蒸着装置モデル VED を使用して,カー ボンと金を二重に蒸着した。

## Ⅲ 観察結果

#### 1. 木材組織(Photo.1)

焦点深度が深いために、木材の3断面が一度に観察・撮影 でき((a),(b)), 倍率を上げると木材の 微細な組織が立 体感にあふれて観察できた((c),(d))。

臨界点乾燥は、木材の微細な組織構造を変形させることな く観察するために有効であるように思われる((e), (f))。

2. 腐朽木材 (Photo.2)

腐朽菌の菌糸の繁殖・侵入状況が観察できた。



3. 木材組織内容物 (Photo.3)

木材組織の内容物の充填状況((a),(b))と溶剤処理によるその溶脱((c),(d))が観察できた。 4. 処理木材 (Photo. 4)

無機薬品の浸透・沈着((a), (b))や樹脂の流動・充填状況((c)~(h))が観察できた。

5. 木 炭 (Photo. 5)

炭化後も木材の組織構造がかなり維持されており((a), (b)),出土木炭の樹種鑑定にも利用できる ((d))。また,活性炭の微細な空隙構造も観察できた ((c))。

6. 脱リグニン木粉 (Photo. 6)

脱リグニン処理した木粉の細胞壁構造の変化については知見が得られなかったが、リグニン含有率の高 い細胞コーナーからの顕著な脱リグニン挙動が観察できた((c), (d))。

#### 7. グラフトセルロース繊維 (Photo. 7)

ポリマーのグラフト結合や沈着による セルロース繊維の表面構造や 形態の変化が観察できた ((a)~ (f))。また、繊維を熱圧して調製したボードの表面における繊維の融着状況((g)~(k))や、ボード の破断面の観察((1))も可能であった。

# 引用文献

- 1) 大谷 醇·石田茂雄:第18回木材学会要旨,106,(1968)
- 2) 石田茂雄·大谷 諄:北大演習林報, 26, 1~9, (1968)
- 3) 原田 浩·古川郁夫:京大演習林報, 43, 320~327, (1972)
- 4) 佐伯 浩: 材料, 22, 894~902, (1973)
- 5) 林 和男・寺沢 真:木材誌, 21, 278~282, (1975)
- 6) 佐伯 浩·後藤輝男·作野友康:木材誌, 21, 283~288, (1975)
- 7) 種田健造・川上英夫・石田茂雄・大谷 醇:木材誌, 25, 209~215, (1979)
- 8) 日本電子顕微鏡学会関東支部編:走査電子顕微鏡一基礎と応用一,共立出版, p. 3, (1976)

### 図版説明

Photo.1 木材組織

- (a) ベイツガ3断面
- (b) ラワン3断面
- (c) トドマツ 心材 放射断面 仮道管壁孔,放射組織,トラベキュレーが観察される。
- (d) トドマツ 辺材 仮道管壁孔
- トールス、マルゴが観察される。
- (e) ヒノキ 辺材 仮道管内壁(風乾)
- (f) ヒノキ 辺材 仮道管内壁(臨界点乾燥)

風乾試料に比べて、ミクロフィブリルの配列状態が鮮明に観察できる。

- Photo.2 菌 朽 木 材 (試料提供:木材利用部 松岡昭四郎防腐研究室長)
  - (a) ブナ 辺材 (オオウズラタケ) 壁孔を通過する菌糸が観察される。
  - (b) セルチス (木材変色菌) 道管内で繁殖している菌糸が観察される。

# Photo. 3 木材組織内容物

- (a) ベイスギ 放射組織著量の内容物が観察される。
- (b) ベイスギ 仮道管壁孔
  著量の沈着物が観察される。
- (c) ベイスギ 放射組織(エタノール洗浄) 内容物がかなり溶脱している。
- (d) ベイスギ 仮道管壁孔(エタノール洗浄)
  沈着物が溶脱し、トールス、マルゴが観察できる。

#### Photo.4 処理木材

- (a) 酢酸鉛水溶液処理材(トドマツ辺材表面) トドマツ辺材を40%酢酸鉛水溶液中に5日間浸漬処理したもの。結晶の析出が著しい。
- (b) 酢酸鉛水溶液処理材(トドマツ 辺材 割裂面)
  (a)と同じ。結晶の析出はわずかである。
- (c) 無処理材 (ヒノキ 心材 放射断面)
- (d) エポキシ樹脂注入処理材(ヒノキ 心材 放射断面) 樹脂の存在が明確に確認できない。
- (e) エポキシ樹脂注入処理材(ヒノキ 心材 放射断面)
  処理材をミクロトームで切削すると、樹脂の注入状態が明らかに観察できる。
- (f) エポキシ樹脂注入処理材(ヒノキ 辺材 放射断面) 樹脂が流動する際のメニスカスが観察される。
- (g) フェノール樹脂注入処理材(イタヤカエデ 放射断面)
  樹脂の注入状態、メニスカス、樹脂の硬化に起因すると思われる道管壁の亀裂が観察される。
- (h) ジアリルフタレートプレポリマー浸漬処理材(ヒノキ 辺材)(試料提供:保護部きのと研究室 谷口 実主任研究官)
  > 時刊.にプレポリマーが沈着している。

#### Photo.5 木 炭(試料提供:林産化学部 杉浦銀治木材炭化研究室長)

- (a) (a) (針葉樹)木材の組織構造が維持されている。
- (b) (a) と同じ。
- (c) 市販活性炭(木炭系)
  木材の空隙に加えて微細な空孔が生成し、内部表面積の増加がうかがわれる。
  (d) 出土木炭(クヌギ属)

木材の組織構造を維持しているので、樹種の鑑定が可能である。

# Photo.6 脱リグニン木粉(試料提供:林産化学部 志水一允微生物化学研究室長)

- (a) 無処理木粉(ブナ メタクリル樹脂包埋) 細胞内腔に樹脂が充填している。
- (b) 無処理木粉(ブナ 脱包埋) 細胞内腔に充填していた樹脂が溶脱している。
- (c) 脱リグニン木粉(ブナ 脱包埋) 亜塩素酸塩法により木材の12.2%に相当するリグニンを除去したもの。細胞コーナー部分 からの脱リグニンが顕著である。
- (d) 脱リグニン木粉(ブナ 放射組織脱包埋) 亜塩素酸塩法により木材の14.7%に相当するリグニンを除去したもの。細胞コーナー部分

からの脱リグニンが顕著である。

- Photo. 7 グラフトセルロース繊維 セリウム塩法により、セルロースにメチルメタクリレートをグラフト共重合させ、ポリメチル メタクリレートグラフト物 (PMMA-G) を調製した。これをアセトン抽出して ホモポリマ ーを除去し、 PMMAグラフトセルロース (PMMA-GC) を得た。これらの繊維およびそ れらを熱圧して製造した ボードの表面を観察した。熱圧条件は、 PMMA-Gの場合 180°C, 100 kg/cm<sup>2</sup>, 8分間、PMMA-GCとセルロースの場合 180°C, 100 kg/cm<sup>3</sup>, 13 分間である。
  - (a) セルロース(溶解パルプ) 繊維は偏平で柔軟性に富み,屈曲している。
  - (b) (a) と同じ
  - (c) PMMA-G (ポリマー含有率 (PC) 58%)
    繊維が肥厚し円柱状になり、剛直になっている。
  - (d) (c)と同じ繊維表面にポリマーが沈着している。
  - (e) PMMA-GC (PC 60%)
    繊維の形状はセルロースとPMMA-Gとの中間である。
  - (f) (e)と同じ 繊維表面のホモポリマーは溶脱しているが、繊維は肥厚し、表面は平滑になっている。
  - (g) PMMA-G ボード (PC 10%)どく一部の繊維が融着している。
  - (h) PMMA-G ボード (PC 50%)
    大部分の繊維が融着している。
  - (i) PMMA-GC ボード (PC 10%)
    ごく一部の繊維が融着している。
  - (j) PMMA-GC ボード (PC 50%)大部分の繊維が融着している。
  - (k) セルロースボード 紙の表面と酷似している。
  - PMMA-G ボード曲げ破断面 (PC 50%)
    繊維の形状をしており、ボード内部の融着が不十分であることがわかる。

— 182 —



禷 茁 ₽ ĸ Photo. 1

0



3

1201



(f) ヒノキ 辺材 仮道管内壁(臨界点乾燥)





(a) ブナ 辺材(オオウズラタケ)



(b) セルチス (木材変色菌)

Photo.2 腐 朽 木 材

林業試験場研究報告 第 329 号

-Plate 2-





Photo.3 木材組織内容物



Photo.4 処 理 木 材



-Plate 5-





(c) 市販活性炭(木炭系)



(b) 鋸屑炭 (針葉樹)







Photo. 5 木



Photo.6 脱リグニン木粉

走査電子顕微鏡による木材および化学処理木材の観察(研究資料) (加藤・黒須)

--Plate 7--



Photo.7 グラフトセルロース維維

(c) PMMA-G (ポリマー含有率 (PC) 58%)









# 走査電子顕微鏡による木材および化学処理木材の観察(研究資料) (加藤・黒須)

-Plate 9-



Photo.7 グラフトセルロース繊維

-Plate 10-