PRINT ISSN 0916-4405 ONLINE ISSN 2189-9363

森林総合研究所研究報告 Vol. 21 No. 3 (No. 463)

BULLETIN

of the Forestry and Forest Products Research Institute

September 2022 国立研究開発法人森林研究・整備機構 森林総合研究所 Forestry and Forest Products Research Institute

森林総合研究所研究報告編集委員会

編集委員長 服部力 Tsutomu HATTORI The Chief Editor 研究ディレクター

Principal Research Director, Forestry and Forest Products Research Institute (FFPRI)

副編集委員長 松本 麻子

Asako MATSUMOTO

編集委員

相川 拓也 Takuya AIKAWA

藤井 佐織 Saori FUJII

古澤 仁美 Hitomi FURUSAWA

長谷川 陽一 Yoichi HASEGAWA

櫃間 岳 Gaku HITSUMA

石橋 靖幸 Yasuyuki ISHIBASHI

鹿又 秀聡 Hidesato KANOMATA

村上亘 Wataru MURAKAMI

野口 正二 Shoji NOGUCHI

奥田 史郎 Shiro OKUDA

高野 麻理子 Mariko TAKANO

坪村 美代子 Miyoko TSUBOMURA

山田 利博 Toshihiro YAMADA

山下 香菜 Kana YAMASHITA

安田 幸生 Yukio YASUDA

吉田 智佳史 Chikashi YOSHIDA 広報普及科長 Public Relations Division, FFPRI

The Vice-Chief Editor

Editors 東北支所 Tohoku Research Center, FFPRI

森林昆虫研究領域 Department of Forest Entomology, FFPRI

立地環境研究領域 Department of Forest Soils, FFPRI

樹木分子遺伝研究領域 Department of Forest Molecular Genetics and Biotechnology, FFPRI

森林植生研究領域 Department of Forest Vegetation, FFPRI

北海道支所 Hokkaido Research Center, FFPRI

林業経営・政策研究領域 Department of Forest Policy and Economics, FFPRI

森林防災研究領域 Department of Disaster Prevention, Meteorology and Hydrology, FFPRI

国際農林水産業研究センター Japan International Research Center for Agricultural Sciences

植物生態研究領域 Department of Plant Ecology, FFPRI

森林資源化学研究領域 Department of Forest Resource Chemistry, FFPRI

林木育種センター Forest Tree Breeding Center, FFPRI

東京大学大学院農学生命科学研究科・農学部 Graduate School of Agricultural and Life Sciences, The University of Tokyo

木材加工・特性研究領域 Department of Wood Properties and Processing, FFPRI

森林防災研究領域 Department of Disaster Prevention, Meteorology and Hydrology, FFPRI

林業工学研究領域 Department of Forest Engineering, FFPRI

This journal is indexed in CAB Abstracts.

表紙写真 Photographs in Cover

夕日を浴びて立つニホンジカのオス(岩手県大船渡市)
 A male sika deer (Cervus nippon) standing in the evening sun, in Ofunato City, Iwate Prefecture
 耐火集成材を用いた展望台,長崎県庁舎(長崎市)
 Observation deck using fireproof glued laminated timber, Nagasaki pref. hall
 作業道の横断排水溝用として製作した竹粗朶
 Bundled bamboo for cross-drainage ditches on skidding roads
 (本文217-222ページ)

森林総合研究所研究報告 第21巻3号(通巻463号)2022.9

目 次

論 文

短 報

研究資料

シカ防護柵に使われる各部材の強度試験

北海道東部弟子屈天然林における長期林分成長モニタリング

Bulletin of the Forestry and Forest Products Research Institute Vol.21 No.3 (No.463) September 2022

CONTENTS

Original article

Coordination between leaf water relations and leaf gas exchange in two ecotypes of *Fagus crenata* tree

Akira UEMURA, His	anori HARAYAMA	
and Atsushi ISHIDA		195

Changes in the *Cryptomeria japonica* shoot transcriptome after short-term treatments with different concentrations of CO_2

Tokuko UJINO-IHARA, Hiroyuki TOBITAand Shin-Ichi MIYAZAWA207

Short communication

Determination of production cost, installation cost and examination of steps involved in bundled bamboo for drainage

Research record

論 文(Original article)

Coordination between leaf water relations and leaf gas exchange in two ecotypes of *Fagus crenata* tree

Akira UEMURA^{1)*}, Hisanori HARAYAMA¹⁾ and Atsushi ISHIDA²⁾

Abstract

Fagus crenata Blume is a dominant species in late-successional, cool-temperate forests of Japan. *F. crenata* has two ecotypes in Japan, one in the Japan Sea region and the other in the Pacific Ocean region. The trees at Nakoso in the Pacific Ocean region suffer higher evaporative demand during the growing season than do those at Appi in the Japan Sea region. This study aimed to determine how leaf morphology and leaf physiology are coordinated to cope with air drought conditions. We investigated intra-crown leaf plasticity for adult trees growing in both regions. The specific hypothesis was that the sun leaves of *F. crenata* at Nakoso would have a lower osmotic potential and a larger vascular structure within their leaves than those at Appi and, as a result, would have a relatively higher leaf mass per area (LMA) and lower carbon assimilation capacity. Relative to trees at Appi, the sun leaves at Nakoso had a thicker lamina, a larger bundle sheath within the lamina, and a smaller compartment area circumscribed by a bundle sheath extension. Even though LMA in the sun leaves at Nakoso was 1.74 times larger than that at Appi, the area-based photosynthetic rates did not differ between sites. Leaf morphological acclimation to high evaporative conditions at Nakoso included reduced mass-based nitrogen (*N*) content and the N/C ratio within the lamina as well as reduced mass- and nitrogen-based assimilation rates. Our study indicates that drought tolerance at the leaf level leads to variations in leaf morphology or leaf gas exchange for drought tolerance.

Key words: intraspecific difference, LMA, Japanese beech, water relations, photosynthesis

Introduction

Plant leaves have morphological and physiological plasticity to cope with unsuitable environments. During photosynthesis, leaves lose water and, by necessity, try to acquire carbon while reducing water consumption. As such, leaf and canopy morphological traits are associated with plant water use. For example, xeric sites favor high leaf mass per area (LMA) (Abrams 1994, Abrams and Mostoller 1995, Mediavilla et al. 2001, Pita and Pardos 2001, Wright and Westoby 2002). The high LMA results from the acquisition of hard tissue structures formed of thick cell walls and a dense vascular system or mesophyll tissue, which help lengthen leaf lifespan (Wright and Westoby 2002, Ishida et al. 2007) and may help prevent the collapse of xylem conduits under low leaf water potentials (Hacke and Sperry 2001, Ishida et al. 2008). A high LMA consequently results in high protein investment to leaf dry mass (mainly, leaf structure) and a small fraction of nitrogen or nutrients allocated to the photosynthetic apparatus (Hikosaka et al. 1998, Poorter and Evans 1998, Reich et al. 1998, Niinemets 1999, Mediavilla et al. 2001, Pons and Westbeek 2004, Takashima et al 2004, Ishida et al. 2008). Thus, plants experience a trade-off or coordination between leaf structure and leaf physiology for drought adaptation (Wright and Westoby 2002, Uemura et al. 2004, Ishida et al. 2008).

Fagus crenata Blume is the most abundant cool-temperate deciduous tree species in Japan. The population is divided into at least two ecotypes: the Pacific Ocean type and the Japan Sea type (Hagiwara 1977). The canopy leaves of the Pacific Ocean type are smaller and thicker (Koike and Maruyama 1998, Tateishi et al. 2010, Ishii et al. 2018) and have photosystem II, with a higher tolerance against strong sunlight (Yamazaki et al. 2007) than those of the Japan Sea type. Despite Japan's narrow geographical area, many plant species in Japan have ecotypes or varieties that are split between the Pacific Ocean and Japan Sea regions, with special adaptations to each. For example, plants have specialized morphologies and physiologies for coping with heavy snow in winter in the Japan Sea region (Kume and Ino 1993, Yamazaki et al. 2007) or with high evaporative demand in summer in the Pacific Ocean region (Uemura et al. 2004, Yamazaki et al. 2007). Although cool-temperate forests in Japan have mesic soil water conditions during the growing season, mature trees may suffer water stress caused by a lack of balance between the water loss from atmospheric evaporative demand and water

Received 10 March 2021, Accepted 10 May 2022

¹⁾ Department of Plant Ecology, Forestry and Forest Products Research Institute (FFPRI)

²⁾ Center for Ecological Research, Kyoto University

^{*} Department of Plant Ecology, FFPRI, 1 Matsunosato, Tsukuba, Ibaraki, 305-8687 JAPAN; E-mail: akirauem@ffpri.affrc.go.jp

supply from the soil. Tateishi et al. (2010) showed that, based on an investigation of geographical variations in tree water use in *F. crenata*, the interaction between physiological and morphological status can allow trees to cope with diverse environmental conditions across its geographical distribution. However, it is still unknown how drought-adaptive changes in leaf water relations are associated with variations in morphology and gas exchange at the single leaf level. Thus, an ecophysiological comparison of the two *F. crenata* ecotypes should help explain how plants coordinate leaf water relations, leaf morphology, and leaf gas exchange to cope with unfavorable microclimates.

This study aimed to determine how leaf morphology and leaf physiology are coordinated to cope with high evaporative demand using the two F. crenata ecotypes in Japan. To do this, we examined many traits related to photosynthesis, water relations, and morphology at the single leaf level and compared the canopy leaves of F. crenata adult trees in the Japan Sea and Pacific Ocean regions. We selected the following parameters: (1) leaf morphology and anatomy, including LMA, leaf density, stomata, mesophyll tissue, and vascular structure within leaves; (2) leaf physiology, including leaf nitrogen (N) content and mass-, area-, and N-based photosynthetic rates; and (3) leaf water relations, including leaf pressure-volume curves and minimum conductance for water vapor in both sun and shade leaves. Although several studies have reported on the geographical clines of F. crenata (e.g., Hiura 1998, Hiraoka and Tomaru 2009), few have focused on the plasticity of leaf properties (e.g., Yamazaki et al. 2007, Bayramzadeh et al. 2008). Therefore, we compared individual sun and shade leaves to evaluate differences in the plasticity of leaf properties. Our specific hypothesis was that sun leaves in the Pacific Ocean region would have large vascular structures within the leaves, low osmotic potentials to cope with high evaporative demand, and that these properties would result in high LMA and low mass- and nitrogen-assimilation rates in their canopy leaves. Additionally, we hypothesized that shade leaves, which grow in conditions with low evaporative demand, would be less stressed and, therefore, would not show differences between the two ecotypes.

Materials and methods

Plant materials and study sites

Hagiwara (1977) divided *F. crenata* populations in Japan into two ecotypes: the Pacific Ocean type and the Japan Sea type. In contrast, Fujii et al. (2002) classified *F. crenata* populations in Japan into three clades based on cpDNA variations: the haplotype of clade I is distributed mainly along the Japan Sea, whereas those of clades II and III occur chiefly along the Pacific Ocean. The haplotypes of clade III have the southernmost distribution of the three clades.

We selected mature F. crenata trees growing in the two ecotypes. Trees from the Pacific Ocean type (clade II) were located at Nakoso (36°58'N, 140°36'E, altitude 700 m) in Fukushima Prefecture. Trees from the Japan Sea type (clade I) were located at Appi (40°00'N, 140°56'E, altitude 825 m) in Iwate Prefecture. The distance between the two sites was 338 km. The study site at Appi (Appi site) was located in a midcool-temperature forest, whereas the site at Nakoso (Nakoso site) was located in a border area between cool-temperature and warm-temperature forests, suggesting that the Nakoso site is more xeric than the Appi site. The Andosol soil was classified as a moderately moist brown forest soil. Canopy leaves of one mature, adult tree were obtained with a scaffolding tower at each site. The forest at the Nakoso site comprised many winter deciduous tree species, such as Fagus japonica Maxim., Betula grossa Sieb et Zucc., Quercus serrata Thunb., Quercus mongolica Fisher var. grosseserrata, Carpinus laxifolia Blume.; this forest type is referred to as a Pacific Ocean type beech forest. The forest at the Appi site consisted mostly of F. crenata trees and a small number of winter deciduous tree species, such as Tilia japonica Simon. and Q. mongolica; this type of forest is referred to as a Japan Sea type beech forest. The top canopy heights of the trees examined at the Nakoso and Appi sites were 14 and 18 m high, respectively, and their ages were approximately 100 and 70 years, respectively. At both sites, F. crenata trees opened new leaves at the beginning of May, which fell at the end of October. Exposed canopy leaves at the uppermost crown were collected as sun leaves and the lowermost crown leaves were collected as shade leaves. In August, the amount of daily photosynthetic photon flux (PPF) at the lowermost crown was approximately 7% of that at the uppermost crown. Investigations of morphological and physiological properties were conducted in August 2005, in the middle of the growing season.

The Nakoso site had little snow cover during winter. At the Appi site, the maximum snow depth was approximately 3 m and snow covered the forest floor from November to May. Microclimatological data, photosynthetic photon flux (PPF, μ mol m⁻² s⁻¹), air temperature (°C), air relative humidity (%), and precipitation (mm) at the top of the canopies were recorded at 10-min intervals with a data logger (MES-UL120, Koito Co., Tokyo, Japan) during the growing season (from April to November). PPF values above the canopies were measured with a solar sensor, L1190-SB (LI-COR Inc., Lincoln, NE, USA) at the Appi site and with an IKS-25 (Koito Co.) at the Nakoso site. Air temperature and relative humidity were measured with HMP45D and HMP45A thin-film capacitance sensors (Vaisala KK, Tokyo, Japan), respectively. Precipitation was measured using a tipping bucket rain gage (Sato-keiryouki,

Tokyo, Japan) at the top of the canopy. The annual mean temperature was 2.4°C higher at the Nakoso site than at the Appi site (Table 1). The warmth index was 17.1 higher at the Nakoso site than at the Appi site.

Leaf gas exchange

Net photosynthetic rates (A) and stomatal conductance were measured with an open, portable measurement system (LI-6400, LI-COR) equipped with a leaf chamber with a chlorophyll fluorescence meter (i.e., fluorometer cuvette, model LI-6400-40). Five randomly selected, fully expanded, intact sun and shade leaves were measured on a sunny day in August between 08:00 and 11:00. The maximum photosynthetic capacity (A_{max}) was measured under 1500 µmol m⁻² s⁻¹ PPF, 370 μ mol mol⁻¹ CO₂ concentration in the inlet gas stream, and at 25°C leaf temperature and was expressed as an area-based A_{max} , mass-based A_{max} , and N-based A_{max} (PNUE) values. The parameters Vc_{max} and J_{max} (Farquhar et al. 1980) were estimated from assimilation rates plotted against the intercellular CO2 concentration (C_i) (A/C_i curve) under 1500 $\mu mol~m^{-2}~s^{-1}$ PPF and 25°C leaf temperature. CO2 concentrations in the chamber were adjusted to 50, 100, 150, 200, 300, 370, 500, 700, 1500, 1800, and 2000 μ mol mol⁻¹. The values of Vc_{max} and J_{max} are the "apparent" values for the maximum rate of ribulose 1,5 bisphosphate (RuBP) carboxylation and the maximum rate of electron transport driving the regeneration of RuBP, respectively. Vc_{max} was calculated by fitting the initial slope of the A/C_i curve (under C_i < 300 μ mol mol⁻¹). Γ^* , K_c , and K_o were assumed to be 41.9, 283, and 195 mmol mol⁻¹, respectively, according to von Caemmerer et al. (1994). J_{max} was calculated by fitting a near-plateau of the A/C_i curve (under $C_i > 1600$ μ mol mol⁻¹).

Leaf water relations

To measure leaf water relations, pressure-volume (P-V)

curves were constructed with measurements from a pressure chamber (Model-3000, SoilMoisture Equipment Co., Santa Barbara, CA, USA). Shoots were collected from the tree canopies and the cut ends were immediately recut under distilled water, covered with a plastic bag, and transported to our laboratory. The shoots were fully rehydrated under dim light and moist conditions overnight. Osmotic potentials at full turgor (ψ_0^{sat}), leaf water potentials at the turgor loss point (ψ_w^{up}), the relative water content at the turgor loss point, the bulk modulus of elasticity in cell walls, and the symplastic water volume in leaves at full turgor (V_s) were calculated from the P-V curves. The maximum bulk modulus of elasticity in the leaf cell walls was determined by linear regression between the turgor potentials and free water contents at the points of the steepest slope. The volume of leaf water (V_t) was calculated as

$$V_{\rm t} = (\text{water-saturated leaf mass}) - (\text{leaf dry mass})$$
 (1)

The number of osmoles in symplastic water within the leaf (N) was calculated as

$$N = \frac{-\Psi_0^{\text{sat}} V_{\text{s}}}{R (T + 273.15)},$$
(2)

where R is the gas constant (8.314 J K⁻¹ mol⁻¹) and T is air temperature (Tyree and Hammel 1972).

To examine cuticle development on the leaf surface or the potential of stomatal closure, the minimum conductance for water vapor (g_{min} : m s⁻¹) was calculated from the rate of water loss in detached leaves. Measurements were conducted under dim light (<10 µmol m⁻² s⁻¹ PPF), at 28°C air temperature, and at 40%–45% relative humidity in a laboratory. The leaf was cut from the shoot, the petiole end was sealed with petroleum jelly, and then the leaf was placed on a balance with 0.00001 g accuracy. The fresh leaves were weighed at 1-min intervals for 10 min. The g_{min} values were expressed on a water vapor

 Table 1. Seasonal changes in microclimate. The monthly mean air temperature, cumulative photosynthetic photon flux (PPF), and precipitation at the Appi and Nakoso sites are presented.

	April	May	June	July	August	September	October	November
Air tempera	ture (°C)							
Appi	4.7	9.3	14	16.9	18	14.3	8.3	2.6
Nakoso	7.2	11.4	16.5	20	20.4	16.8	10.4	5.3
Cumulated I	PPF (mol m⁻	² month ⁻¹)						
Appi	1059	1103	1021	855	850	764	572	399
Nakoso	861	918	858	867	783	639	497	416
Precipitation	n (mm mont	h ^{−1})						
Appi	47	55	96	191	198	128	138	81
Nakoso	83	110	96	231	221	220	240	90

The mean values for 5 years (2001-2005) are shown.

concentration and total leaf area basis ($2\times$ the projected leaf area), according to Kerstiens (1996).

Leaf morphological and biochemical properties

To estimate the individual leaf area, we collected 30 sun leaves and 30 shade leaves at the Nakoso and Appi sites, respectively. We used the allometric formula as follows:

$$LA = 0.00621 \times L \times W (r^2 = 0.99)$$
(3)

where LA is the leaf area (cm²), L is the lamina length (cm), and W is the lamina width (cm). Individual leaf areas were obtained with a digital scanner and image analysis software (Image J, National Institutes of Health, Bethesda, MD, USA). Only the regression line (equation 3) was used to estimate individual leaf areas, because there was no significant difference between the Appi and Nakoso sites and between the sun and shade leaves in the relationship. For sun and shade leaves at both sites, the area of 100 leaves attached to the branch was estimated from this regression.

Leaf morphological and biochemical properties were investigated in fully expanded leaves collected in August. LMA (g m⁻²). Leaf gas exchange was measured and then lamina nitrogen and carbon contents were examined in those same leaves with an N-C analyzer (Sumigraph NC-900, Sumika-Bunseki Center, Osaka, Japan). Additionally, the lamina thickness (µm), leaf density (g cm⁻³), stomatal density, stomatal pore area, and compartment area of lamina circumscribed by bundle sheath (compartment area, mm²) were examined (the number of measurements is shown in Table 2). Stomatal observations were conducted by obtaining a replica of each leaf surface with a celluloid plate. The stomata of F. crenata are located on the abaxial side (hypostomatous) only. Stomatal density (n mm⁻²) was calculated from observations in a 0.25 mm⁻² field of view, avoiding veins, with a microscope, for five sun and shade leaves. Stomatal pore area (μm^2) was calculated by measuring five stomata per leaf; the distance between the outside edges of the cuticular ledges that overarched the pore was measured. Leaf cross sections were used to assess the vascular structure within the lamina. The lengths of the palisade and spongy parenchyma and the upper and lower epidermis, including the cuticle layers, were measured using fresh leaf cross sections and a microscope. To measure the lamina vascular system, the compartment area circumscribed by the bundle sheath extension was measured from digital photographs of five leaves taken with a stereomicroscope.

Results

Seasonal changes in microclimate in 2005 are shown in Fig. 1. Although there was no large difference between both study sites for the cumulated PPFs during the growing season, the daily maximum values of air vapor pressure deficit (VPD)

 Table 2. Mean values ± 1 S.D. for morphological, anatomical, and biochemical parameters in the sun and shade leaves at the Appi and Nakoso sites.

			Appi	i	Nakos	50
	Units	п	Sun	Shade	Sun	Shade
Morphological prope	rties					
Leaf area	cm^2	100	$26.2 \pm 7.0 \text{ a}$	$42\pm13.0~b$	$11.4 \pm 3.9 \text{ c}$	$18.7\pm7.6~d$
Leaf mass per area	g m ⁻²	10	$61.6\pm7.9~b$	$37.8 \pm 5.8 \text{ a}$	$107.4 \pm 5.6 \text{ c}$	$30.9 \pm 2.9 \text{ a}$
Leaf density	g cm ⁻³	10	$0.392 \pm 0.030 \text{ a}$	$0.307 \pm 0.053 \text{ b}$	$0.473 \pm 0.017 \text{ c}$	$0.258 \pm 0.022 \text{ d}$
Stomatal density	$n mm^{-2}$	5	$200 \pm 40 \text{ b}$	128 ± 16 a	248 ± 23 c	126 ± 19 a
Stomatal pore area	μm^2	5	63 ± 8 a	66 ± 12 a	56 ± 7 a	59 ± 5 a
Compartment area	mm^2		0.084 ± 0.0223 a	$0.146 \pm 0.0110 \ b$	$0.035 \pm 0.0033 \text{ c}$	0.097 ± 0.0141 a
Anatomical propertie	es					
Total thickness	μm	5	$151.3 \pm 15.8 \text{ b}$	111.2 ± 8.7 a	207.4 ± 15.7 c	$97.1 \pm 7.2 \text{ a}$
Upper epidermis	μm	5	$11.2 \pm 0.9 \text{ a}$	$10.3 \pm 0.6 \text{ a}$	$14.6\pm1.8~b$	$8.1 \pm 1.0 \text{ c}$
Palisade mesophyll	μm	5	$50.4 \pm 5.2 \text{ b}$	30.9 ± 4.2 a	$94.6 \pm 5.9 \text{ c}$	$24.8 \pm 2.7 \text{ a}$
Spongy mesophyll	μm	5	79.5 ± 9.9 a	$61.6 \pm 6.1 \text{ b}$	$87.1 \pm 10.0 \text{ a}$	$57 \pm 4.1 \text{ b}$
Lower epidermis	μm	5	$10.1 \pm 0.8 \text{ a}$	$8.4\pm 0.8~b$	11.1 ± 0.7 a	$7.1 \pm 0.3 \text{ c}$
Biochemical properti	es					
Mass-based nitrogen	%	10	$2.57 \pm 0.06 \text{ a}$	$2.81 \pm 0.09 \text{ b}$	$2.11 \pm 0.09 \text{ c}$	2.6 ± 0.06 a
Area-based nitrogen	$g m^{-2}$	10	1.58 ± 0.21 a	$1.06\pm0.17~b$	$2.27 \pm 0.13 \text{ c}$	$0.79 \pm 0.06 \text{ d}$
Nitrogen per leaf	g leaf ⁻¹	10	5.05 ± 1.23 a	$4.47 \pm 0.85 \text{ ab}$	$3.78\pm0.66~b$	$1.87\pm0.59~c$
Nitrogen/carbon ratio		10	0.053 ± 0.0011 a	$0.058 \pm 0.0021 \text{ b}$	$0.041 \pm 0.0017 \text{ c}$	0.053 ± 0.0012 a
Lamina absorbance (4	00–700)	7	0.901 ± 0.003 a	$0.87 \pm 0.007 \text{ b}$	0.902 ± 0.005 a	$0.876 \pm 0.007 \text{ b}$

The different letters for each parameter show significant differences (P < 0.05) in a Tukey's HSD test. Compartment area refers to the lamina area surrounded by the bundle sheath. were higher at the Nakoso site than at the Appi site throughout the growing season. We speculate that the difference between sun leaves and shade leaves on the leaf-to-air VPD was even larger because of solar radiation. The daily maximum VPD at the Nakoso site often exceeds 1.5 kPa. For *Fagus sylvatica* L., 1.5 kPa is the threshold for stomatal closure (Lendzion and Leuschner 2008, de Carcer et al. 2017). The total precipitation during the growing season at the Nakoso and Appi sites was 1291 and 932 mm, respectively. Throughout the growing season, the pre-dawn leaf water potential at the measured height was high enough, suggesting that the trees at both sites have little soil water stress. The maximum no-rain period was about 1 week.

Individual leaf area and lamina thickness significantly

Fig. 1. Seasonal courses of the daily total photosynthetic photon flux (A, PPF_{cum}), mean air temperature (B), and daily maximum air vapor pressure deficit (C, VPD_{max}) in 2005. Data were measured at the canopy tops. The thick and dotted lines represent values at Appi and Nakoso, respectively.

differed between the sun leaves (Na-sun) at Nakoso and those at Appi (Ap-sun). The leaf area in Na-sun was 44% of that in Ap-sun, and the lamina thickness in Na-sun was 137% of that in Ap-sun (Table 2). The LMA in Na-sun was 1.74 times larger than that in Ap-sun, resulting from the thick lamina and high leaf density in Na-sun. The difference in lamina thickness was mainly due to the difference in the thickness of the palisade mesophyll layer, rather than the thickness of the spongy mesophyll layer. The two layers of palisade parenchyma in Na-sun were more expanded than in Ap-sun (Fig. 2). As a result, the palisade tissue length/spongy tissue length ratio was higher in Na-sun than in Ap-sun. The upper epidermis was also thicker in Na-sun than in Ap-sun, and the bundle sheaths were larger in Na-sun than in Ap-sun (Fig. 2 and Table 2). The compartment area circumscribed by the bundle sheath extension (i.e., compartment area) was smaller in Na-sun than in Ap-sun. Stomatal density was 1.24 times larger in Nasun than in Ap-sun, but no significant difference in pore area was found between Na-sun and Ap-sun. Most morphological parameters showed no significant difference between the shade leaves at Nakoso (Na-shade) and those at Appi (Ap-shade), except that the individual leaf area in Na-shade was 45% of that in Ap-shade and the leaf density in Na-shade was 85% of that in Ap-shade.

Fig. 2. Micrographs of transverse sections of the lamina of (A) sun leaves at Appi, (B) shade leaves at Appi, (C) sun leaves at Nakoso, and (D) shade leaves at Nakoso sites. The bar indicates 0.1 mm.

Table 5. Mean values ±1 5.D. for the water relation parameters in the sun and shade leaves at the Appranu Makoso sites	Table	3.	Mean	values	±1 \$	5.D. i	for the	e water	relation	parameters	in the s	un and	shade	leaves	at the .	Appi an	id Nakoso) sites.
--	-------	----	------	--------	-------	--------	---------	---------	----------	------------	----------	--------	-------	--------	----------	---------	-----------	----------

	Linita	App	pi 🛛 👘	Nakoso		
	Units	Sun	Shade	Sun	Shade	
Osmotic potential at full turgor	MPa	-1.89 ± 0.02 a	$-1.66 \pm 0.00 \text{ b}$	$-2.12 \pm 0.00 \text{ c}$	-1.81 ± 0.13 ab	
Water potential at turgor loss point	MPa	$-2.07 \pm 0.03 \text{ ab}$	$-1.85\ \pm 0.05\ a$	$-2.68 \pm 0.04 c$	$-2.17\pm 0.14\;b$	
Relative water content at turgor loss point	MPa	$0.95 \pm 0.01 \text{ a}$	$0.92\ \pm 0.01\ ab$	$0.92\ \pm 0.01\ ab$	$0.897\pm 0.02\;b$	
Maximum module of elasticity in the cell wall	MPa	29.3 ± 4.4 a	$34.9\pm 9.8~a$	$27.9 \pm 1.8 \text{ a}$	$27.9\pm4.6~a$	
Dry mass-based V _t	$kg H_2O kg^{-1}$	$1.16 \pm 0.04 \text{ a}$	$1.55\pm 0.05~b$	$1.06 \pm 0.05 \text{ a}$	$1.46\pm 0.14~b$	
$V_{\rm s}/V_{\rm t}$ ratio		$0.59 \pm 0.04 \ a$	$0.73\pm 0.03~ab$	$0.36\pm 0.06~c$	$0.61 \pm 0.10 \text{ ab}$	
<i>N</i> / <i>V</i> _t ratio	Osmoles kg H ₂ O ⁻¹	$0.46\pm 0.04~a$	$0.49\pm 0.02~a$	$0.34\ \pm 0.03\ b$	$0.45 \pm 0.05 \ a$	

Different letters in each parameter show significant differences (P < 0.05) in a Tukey's HSD test.

 V_t = total water volume in leaves at full turgor; V_s = symplastic water volume at full turgor; N = number of osmoles in the cells.

Na-sun had the lowest N on a mass basis but the highest N on an area basis among the four types of leaves because of the highest LMA (Table 2). The mass-based N values were higher in the shade leaves than in the sun leaves, whereas the area-based N values were lower in the shade leaves than in the sun leaves at both sites. Na-sun had the lowest N/C ratio among the four types of leaves.

The minimum conductance for water vapor of leaves (g_{\min}) was the highest in Ap-sun among the four types of leaves (Fig. 3), indicating undeveloped cuticles or loose stomatal closure. The values of g_{\min} ranged from 6.4 to 20.1 m s⁻¹ × 10⁵.

In leaf water relations, Na-sun had the lowest osmotic potential at full turgor (ψ_0^{sat}) and leaf water potential at turgor loss point (ψ_w^{up}) among the four types of leaves (Table 3), indicating that Na-sun can have more negative leaf water

Fig. 3. Minimum conductance for water vapor in detached leaves (n = 5). Bars show ±1 S.D. Different letters show significant differences (P < 0.05) in a Tukey's HSD test.

Fig. 4. Maximum rates of (top panel) RuBP carboxylation (Vc_{max}) and (bottom panel) electron transport driving the regeneration of RuBP (J_{max}) (n = 5). Bars show ± 1 S.D. Different letters show the significant differences (P < 0.05) in a Tukey's HSD test.

potentials during daytime while maintaining turgor pressure. There was no difference in ψ_0^{sat} or ψ_w^{tlp} between Ap-sun and Na-shade, indicating that the canopy leaves at Appi were not experiencing severe drought. The values of ψ_w^{tlp} were smaller for Na-shade than for Ap-shade. There was no difference for the maximum modulus of elasticity among the four types of leaves. Although there was no significant difference in total water volume in leaves at full turgor (V_t) per unit dry mass between Na-sun and Ap-sun, the ratio of symplastic water volume to total water volume within leaves (V_s/V_t ratio) was lower in Na-sun than in Ap-sun. The ratio of the number of osmoles to total water volume (N/V_t ratio) was lower in Na-sun than in Ap-sun. There were no significant differences in the dry mass-based V_t , V_s/V_t ratio, or N/V_t ratio between Na-shade and Ap-shade.

The leaf area-based assimilation capacity excluding the effect of stomatal conductance was evaluated from the Vc_{max} and J_{max} parameters. There was no difference for the area-based Vc_{max} and J_{max} between Na-sun and Ap-sun (Fig. 4), but the mass-based Vc_{max} and J_{max} were significantly higher in Ap-sun than in Na-sun (data not shown), indicating a high investment

Fig. 5. Daily maximum net photosynthetic rates (A_{max}) on a (top panel) leaf area basis, (middle panel) leaf dry mass basis, and (bottom panel) nitrogen basis (n= 5). Bars show ±1 S.D. Different letters show the significant differences (P < 0.05) in a Tukey's HSD test.

of resources to the photosynthesis apparatus within lamina in Ap-sun. The area-based Vc_{max} and J_{max} values were higher in the sun leaves than in the shade leaves in both sites.

Net photosynthetic rates (A_{max}) , including the effect of stomatal conductance, were measured under 370 µmol mol⁻¹ CO₂ (Fig. 5). The differences for area-based A_{max} among the four types of leaves were similar to those of Vc_{max} and J_{max} . Although the lamina thickness was higher in Na-sun than in Ap-sun, no difference in the area-based A_{max} between Na-sun and Ap-sun was found. The mass-based A_{max} and nitrogenbased A_{max} (PNUE) were the lowest in Na-sun among the four types of leaves.

The daily maximum stomatal conductance was three times higher in the sun leaves than in the shade leaves, but there was no difference in the stomatal conductance between the sites (Fig. 6).

Discussion

Generally, intra-crown leaf plasticity was higher for trees in the Pacific Ocean than in the Japan Sea genetic lineages. The top canopy leaves at Nakoso (the Pacific Ocean region) suffered from a higher evaporative demand than those at Appi (the Japan Sea region). Nevertheless, precipitation during the growing season was higher at Nakoso than at Appi. For leaf water relations and morphology, there were differences in some properties in the shade leaves, but the differences were more pronounced in the sun leaves, which grow and operate in a harsher environment. In European beech, genotypes with a low-rainfall origin (less than 900 mm (Peuke et al. 2002)) are known to possess more drought-adaptive leaf water relations than genotypes with a high-rainfall origin (Tognetti et al. 1995, Peuke et al. 2002). Our study suggests that Japanese beech is more sensitive to drought than European beech. In contrast, Ishii et al. (2018) showed that intra-crown leaf plasticity is lower for trees in the Pacific than in Japan Sea genetic lineages of F. crenata. More investigations are needed to evaluate

Fig. 6. Daily maximum stomatal conductance (n = 5). Bars show ±1 S.D. Different letters show the significant differences (P < 0.05) in a Tukey's HSD test.

adaptability to microenvironments in *F. crenata* genotypes, because tree age (Niinemets 2006, Poorter et al. 2009, Lapok et al. 2017) and height (Ambrose et al. 2009, Zhang et al. 2012, Coble and Cavaleri 2017, Azuma et al. 2019) also affect leaf properties such as LMA.

Our observations showed that the leaf area-based photosynthetic rate in Na-sun was the lowest, regardless of the fact that LMA was the largest among the four leaf types. Nitrogen (N) is a limited resource, so an investment of N in the cell wall reduces its distribution to other areas, such as the photosynthetic apparatus, that is, there is a trade-off between N allocation to photosynthesis and to structural tissues (Onoda et al. 2004, Takashima et al. 2004). The high LMA and low N/C ratio in Na-sun resulted from a thick lamina, a thick cell wall, and dense and large vascular systems within the lamina. A dense vascular system in Na-sun would improve water permeability. For F. sylvatica in Italy, Bussotti et al. (2005) showed that trees at the southernmost area, where more xeric conditions exist, have higher LMA and lower N/C ratios than those in the more northern area, where more mesic conditions exist. Negative correlations between wood density and daily minimum water potentials in leaves are widely found across species (Ackerly 2004, Bucci et al. 2004, Santiago et al. 2004, Ishida et al. 2008), probably because hard tissue is needed to avoid implosion of xylem conduits under low leaf water potentials (e.g., Hacke and Sperry 2001). Similarly, high LMA in Na-sun probably helps to tolerate low leaf water potentials in the daytime.

The decrease in leaf osmotic potentials is due to the accumulation of osmoles within leaves (i.e., osmotic adjustment) and/or the decrease in V_s/V_t (e.g., Harayama et al. 2006). In F. crenata, no significant difference in total water volume (V_t) per unit dry mass in the sun leaves between both sites was found, and the V_s/V_t and N/V_t ratios were lower in Nasun than in Ap-sun (Table 3), indicating that a decrease in the symplastic water fraction within leaves in Na-sun contributed to having more negative ψ_{o}^{sat} without an active accumulation of solutes in cells. An increase in the elasticity of the cell wall can also contribute to turgor maintenance. For example, Li (1998) showed that the elasticity of the cell wall varies among regions with different amounts of precipitation in Eucalyptus microtheca F. Muell. In contrast, in our study, no significant difference in the elasticity of the cell wall was found between the sun leaves at the two sites (Table 3). The dense and large vascular system and the small area of the lamina compartment circumscribed by the bundle sheath extension in Na-sun might result in a low V_s/V_t ratio (Bussotti et al. 2005). As the numbers of xylem conduits are positively related to leaf hydraulic conductance (Sack and Frole 2006), the large and dense vascular systems in Na-sun probably cause their leaves to have

high hydraulic conductance.

Leaves under drought conditions usually have smaller and more numerous stomata per unit leaf area than leaves under well-irrigated conditions (Larcher 2003, Bacelar et al. 2004, Pearce et al. 2006). Na-sun had higher stomatal density than Ap-sun, whereas the stomatal density in the shade leaves was the same (Table 2). The high stomatal density in Na-sun is considered a xeromorphic acclimation (Abrams 1990, Abrams 1994, Bussotti et al. 2005). However, our study showed that there was no difference in daily maximum stomatal conductance. The minimum conductance for water vapor (g_{\min}) (cuticle transpiration) indicates the magnitude of the inevitable water loss from the leaf (Burghardt and Riederer 2003). Values of g_{\min} were considerably higher than values reported for *F*. sylvatica (2.5-8 m s⁻¹) but were within the range of values for winter deciduous tree species (Kerstiens 1996). g_{\min} was significantly lower in Na-sun than in Ap-sun, indicating a reasonable acclimation. Kerstiens (1995) obtained a similar result in F. sylvatica. Further studies are needed to determine how minimum conductance is related to drought adaptation.

Acknowledgment

We would like to thank Drs. H. Tobita and Y. Yoneda for supporting our field experiments. This study was supported by grants-in-aid (18658067, 19580179) from the Ministry of Education, Culture, Sports, Science and Technology of Japan.

References

- Abrams, M. D. (1990) Adaptations and responses to drought in *Quercus* species of North America. Tree Physiol., 7, 227–238.
- Abrams, M. D. (1994) Genotypic and phenotypic variation as stress adaptations in temperate tree species: a review of several case studies. Tree Physiol., 14, 833–842.
- Abrams, M. D. and Mostoller, S. A. (1995) Gas exchange, leaf structure and nitrogen in contrasting successional tree species growing in open and understory sites during a drought. Tree Physiol., 15, 361–370.
- Ackerly, D. D. (2004) Functional strategies of chaparral shrubs in relation to seasonal water deficit and disturbance. Ecol. Monog., 74, 25–44.
- Ambrose, A. R., Sillett S. C. and Dawson T. E. (2009) Effects of tree height on branch hydraulics, leaf structure and gas exchange in California redwoods. Plant Cell Environ., 32, 743–757.
- Azuma, W., Ishii, H. R., and Masaki, T. (2019) Height-related variations of leaf traits reflect strategies for maintaining photosynthetic and hydraulic homeostasis in mature and old *Pinus densiflora* trees. Oecologia, 189, 317–328.

Bacelar, E. A., Correia, C. M., Moutinho-Pereira, J. M.,

Gonçalves C., Lopes J.I. and Torres-Pereira J.G. (2004) Sclerophylly and leaf anatomical traits of five field-grown olive cultivars growing under drought conditions. Tree Physiol., 24, 233–239.

- Bayramzadeh, V., Funada, R. and Kubo, T. (2008) Relationships between vessel element anatomy and physiological as well as morphological traits of leaves in *Fagus crenata* seedlings originating from different provenances. Trees, 22, 217–224.
- Bucci, S. J., Goldstein, G., Meinzer, F. C., Scholz, F. G., Franco, A. C. and Bustamante, M. (2004) Functional convergence in hydraulic architecture and water relations of tropical savanna trees: from leaf to whole plant. Tree Physiol., 24, 891–899.
- Burghardt, M. and Riederer, M. (2003) Ecophysiological relevance of cuticular transpiration of deciduous and evergreen plants in relation to stomatal closure and leaf water potential. J. Exp. Bot., 54, 1941–1949.
- Bussotti, F., Pancrazi, M., Matteucci, G. and Gerosa, G. (2005) Leaf morphology and chemistry in *Fagus sylvatica* (beech) trees as affected by site factors and ozone: results from CONECOFOR permanent monitoring plots in Italy. Tree Physiol., 25, 211–219.
- de Carcer, P.S., Vitasse Y., Ponuelas J., Jassey V.E.J., Buttler A. and Signarbieux C. (2017) Vapor-pressure deficit and extreme climatic variables limit tree growth. Glob. Change Biol., 24, 1108–1122.
- von Caemmerer, S., Evans, J. R., Hudson, G. S. and Andrews, T. J. (1994) The kinetics of ribulose-1,5-bisphosphate carboxylase / oxygenase in vivo inferred from measurements of photosynthesis in leaves of transgenic tobacco. Planta, 15, 88–97.
- Coble, A. P. and Cavaleri, M. A. (2017) Vertical leaf mass per area gradient of mature sugar maple reflects both height-driven increases in vascular tissue and light-driven increases in palisade layer thickness. Tree Physiol., 37, 1337–1351.
- Farquhar, G. D., von Caemmerer, S. and Berry, J. A (1980) A biochemical model of photosynthetic CO₂ assimilation in leaves of C₃ species. Planta, 149, 78–90.
- Fujii, N., Tomaru, N., Okuyama, K., Koike, T., Mikami, T. and Ueda, K. (2002) Chloroplast DNA phylogeography of *Fagus crenata* (Fagaceae) in Japan. Plant Syst. Evol., 232, 21–33.
- Hagiwara, S. (1977) Cline on leaf size of beech *Fagus crenata* (in Japanese). Species Biol. Res., 1, 39–51.
- Hacke, U. G. and Sperry, J. S. (2001) Functional and ecological xylem anatomy. Perspect Plant Ecol. Evol. Syst., 4, 97–15.
- Harayama, H., Ikeda, T., Ishida, A. and Yamamoto, S. (2006)

Seasonal variations in water relations in current-year leaves of evergreen trees with delayed greening. Tree Physiol., 26, 1025–1033.

- Hikosaka, K., Hanba, Y. T., Hirose, T. and Terashima, I. (1998) Photosynthetic nitrogen-use efficiency in leaves of woody and herbaceous species. Funct. Ecol., 12, 896–905.
- Hiraoka, K. and Tomaru, N. (2009) Genetic divergence in nuclear genomes between populations of *Fagus crenata* along the Japan Sea and Pacific sides of Japan. J. Plant Res., 122, 269–282.
- Hiura, T. (1998) Shoot dynamics and architecture of saplings in *Fagus crenata* across its geographical range. Trees, 12, 274–280.
- Ishida, A., Diloksumpun, S., Ladpala, P., Matsuki, S., Staporn, D., Panuthai, S., Gamo, M., Yazaki, K., Ishizuka, M. and Puangchit, L. (2007) Contrasting seasonal leaf habits of canopy trees between tropical dry-deciduous and evergreen forestsin Thailand. Tree Physiol., 26, 643–656.
- Ishida, A., Nakano, T., Yazaki, K., Matsuki, S., Koike, N., Lauenstein, D. L., Shimizu, M. and Yamashita, N. (2008) Coordination between leaf and stem traits related to leaf carbon gain and hydraulics across 32 drought-tolerant angiosperms. Oecologia, 156, 193–202.
- Ishii, H. R., Horikawa, S., Noguchi, Y. and Azuma, W. (2018) Variation of intra-crown leaf plasticity of *Fagus crenata* across its geographical range in Japan. Forest Eco. Manage., 429, 437–448.
- Kerstiens, G. (1995) Cuticular water permeance of European trees and shrubs grown in polluted and unpolluted atmospheres, and its relation to stomatal response to humidity in beech (*Fagus sylvatica* L.). New Phytol., 129, 495–503.
- Kerstiens, G. (1996) Cuticular water permeability and its physiological significance. J. Exp. Bot., 47, 1813–1832.
- Koike, T. and Maruyama, Y. (1998) Comparative ecophysiology of the leaf photosynthetic traits in Japanese beech grown in provenances facing the Pacific Ocean and the Sea of Japan (in Japanese with English summary). J. Phytogeogr. Taxon., 46, 23–28.
- Kume, A. and Ino, Y. (1993) Comparison of ecophysiological responses to heavy snow in 2 varieties of *Aucuba* japonica with different area of distribution. Ecol. Res., 8, 111–121.
- Lapok, E. Y., Huat, O. K., Chubo, J. K. and Hung, P. K. J. (2017) Changes in leaf characteristics with tree age in *Dryobalanops beccarii* Dyer in a restored forest of Sarawak, Malaysia. J. Biol. Sci., 17(3), 251–259.
- Larcher, W. (2003) Physiological Plant Ecology: ecophysiology and stress physiology of functional groups. Fourth edition. Springer, Berlin, pp.401–416.

Lendzion, J. and Leuschner, C. (2008) Growth of European

beech (*Fagus sylvatica* L.) saplings is limited by elevated atmospheric vapour pressure deficits. Forest Ecol. Manage., 256, 648–655.

- Li, C. (1998) Some aspects of leaf water relations in four provenances of *Eucalyptus microtheca* seedlings. For. Ecol. Manage., 111, 303–308.
- Mediavilla, S., Escudero, A. and Heilmeier, H. (2001) Internal leaf anatomy and photosynthetic resource-use efficiency: interspecific and intraspecific comparisons. Tree Physiol., 21, 251–259.
- Niinemets, Ü. (1999) Components of leaf dry mass per area thickness and density - alter leaf photosynthetic capacity in reverse directions in woody plants. New Phytol., 144, 35–47.
- Niinemets, Ü. (2006) The controversy over traits conferring shade-tolerance in tree: ontogenetic changes revisited. J. Ecol., 94, 464–470.
- Onoda, Y., Hikosaka, K. and Hirose, T. (2004) Allocation of nitrogen to cell walls decrease photosynthetic nitrogenuse efficiency. Funct. Ecol., 18, 419–425.
- Pearce, D. W., Millard, S., Bray, D. F. and Rood, S. B. (2006) Stomatal characteristics of riparian poplar species in a semi-arid environment. Tree Physiol., 26, 211–218.
- Peuke, A. D., Schraml, C., Hartung, W.and Rennenberg, H. (2002) Identification of drought-sensitive beech ecotypes by physiological parameters. New Phytol., 154, 373–387.
- Pita, P. and Pardos, J. A. (2001) Growth, leaf morphology, water use and tissue water relations of *Eucalyptus* globulus clones in response to water deficit. Tree Physiol., 21, 599–607.
- Pons, T. L. and Weatbeek, M. H. M. (2004) Analysis of differences in photosynthetic nitrogen-use efficiency between four contrasting species. Physiol. Plant., 122, 68–78.
- Poorter, H. and Evans, J. R. (1998) Photosynthetic nitrogenuse efficiency of species that differ inherently in specific leaf area. Oecologia, 116, 26–37.
- Poorter, H., Niinemets, Ü., Poorter, L., Wright, I. J. and Villar, R. (2009) Causes and consequences of variation in leaf mass per area (LMA): a meta-analysis. New Phytol., 182, 565–588.
- Reich, P. B., Ellsworth, D. S. and Walters, M. B. (1998) Leaf structure (specific leaf area) modulates photosynthesisnitrogen relations: evidence from within and across species and functional groups. Funct. Ecol., 12, 948–958.
- Sack, L., Frole, K. (2006) Leaf structural diversity is related to hydraulic capacity in tropical rain forest trees. Ecology, 87, 483–491.
- Santiago, L. S., Goldstein, G., Meinzer, F. C., Fisher, J. B., Machado, K., Woodruff, D. and Jones, T. (2004) Leaf

photosynthetic traits scale with hydraulic conductivity and wood density in Panamanian forest canopy trees. Oecologia, 140, 543–550.

- Takashima, T., Hikosaka, K. and Hirose, T. (2004) Photosynthesis or persistence: nitrogen allocation in leaves of evergreen and deciduous *Quercus* species. Plant Cell Environ., 27, 1047–1054.
- Tateishi, M., Kumagai, T., Suyama, Y. and Hiura, T. (2010) Differences in transpiration characteristics of Japanese beech trees, *Fagus crenata*, in Japan. Tree Physiol., 30, 748–760.
- Tognetti, R., Johnson, J. D. and Michelozzi, M. (1995) The response of European beech (*Fagus sylvatica* L.) seedlings from two Italian populations to drought and recovery. Trees, 9, 348–354.
- Tyree, M. Y. and Hammel, H. T. (1972) The measurement of the turgor pressure and the water relations of plants by the

pressure-bomb technique. J. Exp. Bot., 23, 267-282.

- Uemura, A., Ishida, A., Tobias, D. J. Koike, N. and Matsumoto, Y. (2004) Linkage between seasonal gas exchange and hydraulic acclimation in the top canopy leaves of *Fagus* trees in a mesic forest in Japan. Trees, 18, 452–459.
- Wright, I. J. and Westoby, M. (2002) Leaves at low versus high rainfall: coordination of structure, leaf lifespan and physiology. New Phytol., 455, 403–416.
- Yamazaki, J., Yoda, E., Takahashi, A., Sonoike, K. and Maruta, E. (2007) Pacific Ocean and Japan Sea ecotypes of Japanese beech (*Fagus crenata*) differ in photosystem responses to continuous high light. Tree Physiol., 27, 961–968.
- Zhang, Y., Zheng, Q. and Tyree, M. T. (2012) Factors controlling plasticity of leaf morphology in *Robinia pseudoacacia* L. I: height-associated variation in leaf structure. Ann. Forest Sci., 69, 29–37.

太平洋側型ブナと日本海側型ブナ成木樹冠内の葉の可塑性の違い

上村章^{1)*}、原山尚德¹⁾、石田厚²⁾

要旨

ブナ (Fagus crenata Blume) は、日本の冷温帯に優占し、太平洋型と日本海型 2 つのエコタイプを持つ樹 種である。太平洋型エコタイプである勿来の個体は、日本海型エコタイプである安比の個体より、高い蒸 散要求にさらされる。我々は、ブナの個体内の葉の特性のバリエーションを調べた。この研究の目的は、 どのように葉の形態と葉の生理生態学的特性が大気の乾燥状態に対応するために関係し合っているかを明 らかにすることである。具体的仮説は、勿来陽葉は、安比陽葉より、低い浸透ポテンシャルそして大きな 葉脈構造を持つである。結果として、勿来陽葉は、高い葉面積当たりの乾燥重量 (LMA) そして低い二酸 化炭素同化能力を持つことになる。勿来陽葉は、安比陽葉と比べて厚い葉身、葉身内に大きな維管束鞘、 小さな維管束鞘延長部包囲面積を持った。勿来陽葉の LMA は安比陽葉の 1.74 倍だった。勿来陽葉は、日 中、葉の膨圧を維持しつつ、より低い葉の水ポテンシャルを持つことができた。勿来の高い蒸散要求状況 の対する葉の形態的順化は、結果的に、葉身内の窒素濃度、N/C 率を減らした。そして、乾重当たり、窒 素当たりの同化速度を減らした。我々の研究は、葉レベルの乾燥耐性は、葉の水分特性だけでなく形態レ ベルでも変化を導くことを示す。これは、乾燥耐性に関して葉の水分特性と葉の形態あるいは葉のガス交 換の間に連携があることを暗示する。

キーワード:可塑性、LMA、ブナ、水分特性、光合成

原稿受付:令和3年3月10日 原稿受理:令和4年5月10日 1)森林総合研究所植物生態研究領域 2)京都大学生態学研究センター

^{*} 森林総合研究所 植物生態研究領域 〒 305-8687 茨城県つくば市松の里1

論 文 (Original article)

Changes in the *Cryptomeria japonica* shoot transcriptome after short-term treatments with different concentrations of CO₂

Tokuko UJINO-IHARA^{1)*}, Hiroyuki TOBITA²⁾ and Shin-Ichi MIYAZAWA¹⁾

Abstract

A transcriptome analysis was conducted to identify and characterize the differentially expressed genes (DEGs) in *Cryptomeria japonica*, a coniferous species endemic to Japan, after short-term treatments with different concentrations of CO_2 . The *de novo* assembly of the obtained RNA reads resulted in 35,211 tentative transcripts. The expression levels of 113 and 30 genes were increased in response to elevated (800 ppm) and lowered (200 ppm) CO_2 concentrations, respectively. The deduced functions of these genes indicated that different molecular pathways were activated in response to the two different CO_2 treatments. The expression levels of the gene transcripts involved in the photosynthesis and photorespiration pathways were not affected by the CO_2 concentration, except for a homolog of a chloroplast RNA polymerase subunit that is involved in the transcription of chloroplast coding genes. Together with the enrichment of genes acting in chloroplasts among detected DEGs, adjusting the transcription of genes related to chloroplast functions may be one of the earliest responses to change CO_2 at the transcriptional level.

Key words : CO₂, Cryptomeria japonica, transcriptome

Introduction

The atmospheric CO_2 concentration has increased due to industrial activities and is expected to continue to increase in the future (Prentice et al. 2001). CO_2 is one of the substrates of photosynthesis; therefore, changes in the atmospheric CO_2 concentration are expected to have a large impact on plant growth. Plant species respond differently to CO_2 changes through a complex network of proteins and other molecules. To understand plant responses to CO_2 fluctuations at a molecular level, we must identify the genes involved in such molecular networks.

The effects of elevated atmospheric CO_2 concentration on plants vary by species (Ainsworth and Long 2005, Wang et al. 2012). Therefore, it is crucial that we understand how CO_2 concentration affects each species. *Cryptomeria japonica* is a coniferous species endemic to Japan. It is also widely planted, constituting approximately 40% of the country's artificial forests. A free-air CO_2 enrichment experiment was conducted to evaluate the physiological and growth changes in *C. japonica* (Hiraoka et al. 2017). A two-year elevated CO_2 (eCO₂) treatment (550 ppm) was found to have positive effects on the photosynthetic rate and promoted dry mass growth for the whole plant and all organs but had negative effects on stomatal conductance and the maximum carboxylation rate. These observations suggest that carbon metabolism pathways in *C. japonica* are adjusted in response to eCO₂, but the genes involved are largely unknown.

Transcriptome analyses have been conducted in many plant species to identify the genes that respond to changes in CO₂. As the atmospheric CO_2 concentration (a CO_2) is currently increasing, most studies have focused on the effects of eCO₂ on plants. In these studies, the differentially expressed genes (DEGs) between eCO₂ and aCO₂ conditions were intensively surveyed. Microarray technologies were used in the early stages of these studies. However, these analyses require genomic information of the target species, and this has led to the Populus species becoming a very well-studied woody species. After exposure for 3 and 6 years to eCO₂ (550 ppm), 8 and 28 DEGs were detected in the cDNA arrays of Populus × euramericana carrying 38,223 genes, respectively (Taylor et al. 2005). After exposure for 12 years to eCO₂ (560 ppm), Populus tremuloides microarrays carrying 61,252 genes were used to identify 539 DEGs (Wei et al. 2013). While 5,127 out of 56,000 genes were differentially expressed when comparing the transcriptomes of the leaves of triploid white poplar ((*Populus tomentosa* \times *P. bolleana*) \times *P. tomentosa*) after three months of treatment with three different CO₂ concentrations (385, 550, and 720 ppm, Liu et al. 2014), the number of DEGs detected under eCO₂ in the *Populus* species was relatively small.

In more recent years, high-throughput RNA sequencing technologies (RNA-Seq) have become increasingly popular

Received 2 July 2021, Accepted 12 May 2022

¹⁾ Department of Forest Molecular Genetics and Biotechnology, Forestry and Forest Products Research Institute (FFPRI)

²⁾ Department of Plant Ecology, FFPRI

^{*} Department of Forest Molecular Genetics and Biotechnology, FFPRI, 1 Matsunosato, Tsukuba, Ibaraki, 305-8687 JAPAN;

E-mail: udino@ffpri.affrc.go.jp

for detecting DEGs. RNA-Seq is advantageous compared to microarray analysis, as it can be used to analyze a larger number of genes. RNA-Seq analysis was conducted for poplar seedlings grown under eCO₂ (560 ppm and 720 ppm) for 16 weeks in open-top chambers (Kim et al. 2021). Seedlings of two clones (Populus alba × Populus glandulosa hybrid "Clivus" and Populus euramericana "I-476") were tested, and only 26 and 15 genes were identified as likely to respond to the eCO₂ for Clivus and I-476, respectively. RNA-Seq can provide tentative reference gene sets for target species; consequently, DEG screening is more easily applicable in non-model plant species, where there is no prior knowledge of the gene transcripts. DEG analysis was therefore selected for use with the coniferous species Abies koreana. By analyzing the needles of three-year-old trees treated with eCO₂ for 21 days (Hwang et al. 2019), 3,165 differentially expressed transcripts were detected from 334,898 contigs.

The long-term effects of eCO₂ have primarily been investigated in tree species, as the effects are thought to be more important for perennial woody species. For this reason, studies that focused on short-term CO₂ treatments and the effects of low CO₂ concentrations (ICO₂) have been limited. However, the transcriptome from such treatments can also be useful for a better understanding of the molecular pathways involved in the response to CO_2 . It was reported that the transcriptional changes in response to eCO₂ start within 2 h in Arabidopsis (Higuchi-Takeuchi et al. 2020). Short-term responses of the transcriptome using RNA-Seq have previously been reported in the coniferous species, Pinus massoniana (Wu et al. 2019). Genes expressed in the seedlings of P. massoniana treated with eCO_2 for three different durations (6, 12, and 24) h) were compared with a control sample (0 h), and a total of 7,088 DEGs were detected among the 140,863 transcripts. Although the DEGs may include circadian oscillation genes as the gene expression was compared against a 0 h sample, the results suggested that there were genes transcriptionally regulated by the short-term eCO₂ treatment in this coniferous species. The genes underlying quick CO₂ responses may be captured by transcriptome analysis after short-term treatment. Understanding the genes that respond quickly to CO₂ and how they act in long-term treatments could provide useful information to help elucidate CO₂ acclimation in tree species. Transcriptomes from ICO₂ conditions are also useful as the 1CO₂ can cause contrasting responses to activity in the many molecular pathways compared to eCO_2 (Liu et al. 2016). For example, while photosynthesis activity is promoted, photorespiration is suppressed, and stomatal closure is promoted under eCO₂, contrasting results were reported in the ICO₂ conditions. Therefore, comparing the transcriptomes between ICO₂ and eCO₂ conditions may help to highlight the important genes in response to carbon availability.

In this study, a transcriptome analysis of shoots from twoyear-old seedlings under short-term treatments with contrasting CO_2 concentrations (ICO₂: 200 ppm and eCO₂: 800 ppm) was conducted to identify the genes rapidly responding to the CO_2 changes. The DEGs between the eCO₂ and ICO₂ treatments were surveyed and annotated. The results will help us to dissect the complicated molecular network controlling *C*. *japonica* responses to CO_2 .

Materials and methods

Plant materials

In May 2017, two-year-old seedlings that had been grown in a plastic greenhouse were transferred to day-light phytotron chambers (Koitotron K30-1602-G; Koito Industries, Yokohama, Japan). Both the greenhouse and the phytotron are located at the Forestry and Forest Products Research Institute in Tsukuba, Japan. Seedlings were cultured in pots (1/5000-are Wagner pot, one individual per pot) filled with Kanuma pumice and red granular soil (1:1 volume ratio) under natural light conditions. Solid fertilizer (15 g per pot) was applied on the soil surfaces in May 2017 (NexCOTE N-P-K = 16-7-12+Mg+TE, HYPONeX, Osaka, Japan). The plants were watered twice a week until the water drained from the bottom of the pots. The day/night air temperature and relative humidity were set at 25°C/20°C and 60%/70%, respectively. CO₂ concentration in the glasshouse was not controlled and was monitored with a portable CO2 sensor (TR-76Ui, T&D Corp., Matsumoto, Japan) at 10 min intervals from July to October 2017; the CO₂ concentration ranged from 351-761 ppm, with the average of 467 \pm 55 ppm (mean \pm SD, n = 15,731). Plants were transferred from the glasshouse to a laboratory the evening prior to the sampling date (Table 1). The shoots were covered with aluminum foil before the CO₂ treatments to prevent gene expression perturbations from the light exposure. The seedlings were half-siblings derived from a single mother

Table 1. Sample abbreviations and treatment conditions

Individual ID	CO ₂ treatment	Sample abbreviation ^a	Sampling Date	Sampling Time
A	200 ppm	L_A	2017-10-24	11:00
В	200 ppm	L_B	2017-10-25	11:00
С	200 ppm	L_C	2017-10-26	13:00
D	200 ppm	L_D	2017-10-27	11:00
Е	200 ppm	L_E	2017-10-31	11:00
В	800 ppm	E_B	2017-10-25	13:00
С	800 ppm	E_C	2017-10-26	11:00
D	800 ppm	E_D	2017-10-27	NOON
Е	800 ppm	E_E1 ^b	2017-10-31	NOON
Е	800 ppm	E_E2 ^b	2017-10-31	13:00

a. Samples were given designations with the prefixes of "E" and "L" for eCO₂ (800 ppm) and ICO₂ (200 ppm), respectively.

b. E_E1 and E_E2 were sampled from different shoots of the same individual.

tree (a cultivar, Nakanojo-2).

RNA sampling and RNA sequencing (RNA-Seq)

The CO₂ treatments and the sampling were performed on the 24, 25, 26, 27, and 31 of October, 2017. Currentyear shoots of the C. japonica were enclosed in a portable CO_2/H_2O gas exchange analyzer and exposed to a CO_2 concentration of 800 ppm (eCO₂) or 200 ppm (lCO₂). A cylindrical transparent chamber (Model 6400-05, Li-Cor, Lincoln, NE, USA) was used in the experiment. The leaf temperature and photosynthetically active photon flux density radiated on the needles were controlled at 25°C and 800 μ mol m⁻² s⁻¹, respectively, throughout the treatments. After 90 min of exposure to the respective CO_2 concentration, the shoots in the chamber were harvested with a pair of scissors and immediately frozen with liquid nitrogen. The 90 min CO₂ treatments caused significant changes in the metabolite concentrations in the C. japonica shoots (Miyazawa et al. unpublished data). Five samples for each treatment were harvested from five individuals (A, B, C, D, and E, Table 1). The elevated CO₂ treatment was not conducted for individual A, and instead, shoots on two branches of individual E were treated with eCO₂. One, two, and two samples treated with eCO₂ were harvested at approximately 11:00, noon, and approximately 13:00, respectively. All samples treated with ICO₂ were harvested at approximately 11:00, except for the sample of individual C harvested at approximately 13:00. Sunrise at Tsukuba is at approximately 6:00 in late October; thus the sampling was carried out 5-7 h after sunrise.

Total RNAs of the sampled shoots were extracted using Agilent Plant RNA Isolation Mini Kit according to the manufacturer's instructions (Agilent Technologies, Santa Clara, CA, USA) and then subjected to DNase digestion using the Turbo DNA free kit (Thermo Fisher Scientific, Waltham, MA, USA). RNA extraction was carried out twice for each sample, and these two replicates were subjected to Illumina sequencing. Samples were given designations with the prefixes of "E" and "L" for eCO₂ and ICO₂, respectively, and suffixed to indicate the replicate number (rp1 or rp2). For example, L_A_ rp1 denotes replicate 1 of the ICO₂ treatment for individual A. Library preparation was conducted using the NEBNext Ultra RNA Library Prep Kit (New England Biolabs, MA, USA), and paired-end sequencing of 150 bp fragments was conducted on an Illumina HiSeq 4000 platform (Illumina, San Diego, CA, USA) by Novogene (Beijing, China). The obtained raw reads were deposited and are available in the DDBJ sequence read archive under the accession number DRA012842.

Data processing and de novo assembly

Low-quality reads with quality scores of < 30 were trimmed

using prinseq-lite.pl v0.20.4 (Schmieder and Edwards 2011). The remaining adaptor sequences were removed using cutadapt v1.18 (Martin 2011). rRNAs were filtered using SortMeRNA v2.1 (Kopylova et al. 2012), and the reads < 50 nt long were removed using the lengthsort command of SolexaQA++ v3.1.7.1 (Cox et al. 2010). De novo assembly of the reads was performed using Trinity v2.11.0, with a minimum contig length of 150 bp and the '--include_supertranscripts' option (Grabherr et al. 2011). The resulting contigs were further combined using cd-hit-est v4.7 (Fu et al. 2012) with a sequence identity threshold of 98% (-c 0.98), alignment coverage for the shorter sequence of 100% (-aS 1.0), and alignment coverage for the longer sequence of 0.5% (-aL 0.005). Potential contamination of other organisms in the obtained contigs was detected by comparing the generated contigs to the nucleotide database (nt) retrieved from The National Center for Biotechnology Information (NCBI, https://ftp.ncbi.nlm.nih.gov/blast/db/, downloaded on August 4, 2020) using BLASTn v.2.10.1, with the option to include or exclude Viridiplantae entries and a cut off value of e⁻²⁰. When one contig did not match the Viridiplantae entries but matched the entry derived from nonplant species, the corresponding contig was removed as a possible contaminating sequence. To filter contigs with low abundance, reads were mapped to the contigs using BWA-MEM v0.7.17 (Li and Durbin 2009). The count data for each contig was then obtained using featureCounts v2.0.3 (Liao et al. 2014). Contigs were filtered when the total transcripts per million (tpm) value of 20 libraries was ≤ 10 . The putative coding regions of the remaining contigs were deduced using a TransDecoder v.5.3.0 with -m 30 (https://github.com/ TransDecoder/TransDecoder/wiki). Contigs with predicted coding sequences (CDS) were further clustered based on their predicted peptide sequences using a cd-hit with a sequence identity threshold of 98% (-c 0.98), alignment coverage for the shorter sequence of 100% (-aS 1.0). The representative contigs in each cluster by cd-hit were concatenated with contigs having no CDS to make a tentative reference transcript set. As the noncoding RNAs may be functional and differentially expressed with the CO₂ concentrations, contigs without CDS remained in the reference transcript set. The putative functions of the transcripts were deduced using a BLASTx v.2.10.1+ search against Arabidopsis reference sequences (Araport11_ genes.201606.pep.fasta) retrieved from The Arabidopsis Information Resource (TAIR; https://www.arabidopsis.org/ index.jsp) and UniProtKB/Swiss-Prot database (uniprot_sprot. fasta) retrieved from the UniProt Knowledgebase (https:// www.uniprot.org/downloads, Schneider et al. 2005), with default parameters and a cut off value of e⁻⁵. In addition, a total of 174,396 mRNA sequences of C. japonica were obtained from the NCBI nucleotide database (https://www.ncbi.nlm.

nih.gov/nucleotide/, queried by "*Cryptomeria japonica*" and "mRNA," downloaded on August 4, 2020) and compared to the tentative reference transcripts using BLASTn with the default parameters and a cut off value of e^{-20} .

DEG analysis and Gene Ontology (GO) annotation

To check for reproducibility, correlation coefficients between the gene expression levels in two replicates of the same individual were calculated using the cor.test function in the R v4.0.2 package following the spearman method (https://stat. ethz.ch/R-manual/R-devel/library/stats/html/cor.test.html, R Core Team 2021). To calculate the correlation coefficient, tpm was used as the expression value for each gene.

DEGs between eCO_2 and ICO_2 were then investigated using DESeq2 v1.30.1 with a two-factor negative binomial GLM to consider the effects of CO2 and the individuals (Love et al. 2014). In short, when gene expression was higher in one condition than another, and the tendency was shared between all tested individuals, it was identified as a DEG. One of the two replicates of L_C (L_C_rp2) and two replicates of L_ A were excluded from the DEG analysis for the following reasons: the expression profile of L C rp2 deviated from the rest of the samples, and the shoots treated by eCO₂ (E_A) were not available from individual A. The difference in the gene expression profiles was large between individuals, as described later. Therefore, both the ICO_2 and eCO_2 samples of the same individual should be included in the DEG analysis to consider the effects of individuals. Otherwise, it would not be possible to determine whether the expression value of a gene observed under one condition in one individual is different from that under another condition in the same individual.

Based on the annotation of the homologous *Arabidopsis* genes, GO enrichment analysis was conducted using the web application, g:Profiler (Raudvere et al. 2019). The GO term was considered to be significantly enriched when the adjusted *p*-value was < 0.05.

Results and discussion

Transcriptome sequencing and *de novo* assembly

The *de novo* assembly of the reads resulted in 35,211 tentative transcripts, with an average length of 1,982.44 bp and N_{s0} of 2,783 bp. CDSs were predicted for 34,490 transcripts but were not predicted for 721 genes. Based on the BLAST search results, 25,467 of the contigs (72.3%) showed sequence similarity to *Arabidopsis* genes. An additional 815 contigs had similarity to proteins in the UniProtKB/Swiss-Prot database. Therefore, 26,282 contigs (74.6%) were likely to be conserved genes. These contigs were further compared against the transcript sequences for *C. japonica* that were available in the NCBI nucleotide database. The results showed that 25,682

contigs (72.9%) had similarities to the mRNA of *C. japonica*. The contigs obtained may include new transcripts expressed in shoots that have not previously been sequenced.

Gene expression profiles of the samples under different CO_2 concentrations

First, the correlation between the gene expression profiles of two technical replicates was tested. The correlation coefficient (*r*) range was 0.78–0.94 (Fig. S1, Table S1). The percentages of rRNA in the total RNA were highly variable between samples (2.1%–38.7%), and this may be one of the reasons for the low correlation between replicates. The L_C replicates showed the lowest *r*-value between the two technical replicates (r = 0.78). The L_C_rp2 likely had a deviated expression profile when compared to the rest of the samples, as the *r*-values between L_C_rp2 and the other samples were relatively low (r = 0.66-0.81).

Comparing the whole transcriptome profile by hierarchical clustering showed that the gene expression profile was more strongly affected by individuals than by the CO₂ treatments (Fig. 1), as the samples appeared to be clustered by individuals but not by CO₂ treatments. The result suggested that both eCO_2 and lCO_2 treatments used in this study did not create a strong stress effect on the seedlings. The differences between the individuals could be due to both chronological and genetic differences. Individual C (E_C and L_C) had a more distinct expression pattern when compared with the other individuals (Fig. 1). This was probably because sampling of the E_C and L_C was done in the reverse order against the others as described in the Materials and methods. Furthermore, as the individuals were half-siblings, there were genetic differences

Fig. 1. Hierarchical clustering of samples based on the expression patterns of the transcripts.

Prefix denotes CO_2 conditions, and the suffix indicates the technical replicate number (rp1 or rp2). L_C_rp2 was excluded from the clustering analysis as it had a deviated expression pattern from the rest of the samples. derived from their pollen parents. Variations caused by their genetic backgrounds could be reduced in future studies by using genetically identical samples, such as cuttings derived from a single individual. Although reducing the differences in the genetic background would allow us to detect DEGs with smaller expression differences, the DEGs identified among genetically different individuals may be more significant and fundamentally important in CO_2 responses in *C. japonica*.

In order to consider the individual effect in DEG detection, comparing samples treated with eCO_2 and ICO_2 within the same individuals was desirable, as mentioned in Materials and methods. L_A was removed from the DEG analysis because the E_A sample (i.e., shoots treated by eCO_2 in individual A) was unavailable. The deviated expression of the L_C_rp2 was supported in the clustering analysis (Fig. S2); thus, L_C_rp2 was also removed from the later analysis.

DEGs under different CO₂ concentrations

As a result of DEG analysis, 143 transcripts were identified

as candidate DEGs between eCO_2 and ICO_2 . Among them, 113 and 30 genes had increased expression under the eCO_2 and ICO_2 conditions, respectively (Fig. 2). It is of note that the direction of transcriptional regulation could not be addressed in this study, due to the lack of samples under aCO_2 . We assumed that the gene expression levels at aCO_2 would be similar between the shoots within an individual, as the condition was thought to be almost the same before CO_2 treatment. When the observed expression of a gene was higher with the ICO_2 treatment than the eCO_2 , it could be a result of increased gene expression under the ICO_2 and/or decreased gene expression under eCO_2 , and *vice versa*. The gene expression under aCO_2 should be analyzed to confirm the constancy of gene expression under the aCO_2 and to elucidate the direction of transcriptional regulation in the future.

The percentage of the DEGs detected in the analyzed genes was less than 1% in this study (0.4%). The percentages also tended to be small in the analyzed tree species regardless of the duration of CO_2 treatment or the applied CO_2 concentration,

Fig. 2. Expression profiles of DEGs under different CO₂ concentrations.

Hierarchical clustering and heatmap of the relative expression levels of the detected DEGs. The sample names are indicated at the bottom of the heatmap. The abbreviation for each sample is listed in Table 1, and the suffix indicates the replicate number (rp1 or rp2). The color scale represents the relative expression values. Blue represents a low level, and magenta represents a high level of transcript abundance.

as described earlier in this manuscript. One of the exceptions was triploid white poplar, as 9.1% of the analyzed genes were detected as DEGs. The difference in growth temperatures of each CO₂ treatment, however, may also contribute to a higher percentage of DEGs (Wei et al. 2013). Another example is *P. massoniana*, as 7.6% of the analyzed unigenes were detected as DEGs in this species (Wu et al. 2019). It should be noted that the DEGs may include circadian oscillation genes, and thus the percentage might be an overestimate. The effects of CO₂ fluctuation on transcriptional regulation might be small in most of the expressed genes in *C. japonica*, as was reported in other plant species (Kanani et al. 2010, Eisenhut et al. 2017).

Annotation of highly significant DEGs

Based on their homology to the known gene database, 113 of the 143 DEGs (79.0%) were identified as conserved genes, whereas 30 genes did not show homology to the genes in the searched database. All DEGs had a CDS of more than 30 amino acids, except for one DEG. To identify what genes rapidly responded to the changes in CO₂ concentrations at the transcriptional level, the functions of highly significant DEGs were deduced from the homology search (Table 2). All but one of the top 20 significant DEGs was more expressed under eCO₂, and eight DEGs, including the most significant, were unknown genes. One of the key enzymes of the photorespiration pathway in angiosperm, glutamine synthetase 2, is absent in coniferous species (Miyazawa et al. 2018). This indicates that conifers might have specific carbon metabolism regulation and unique genes involved in this pathway. Eleven of the DEGs showed homology to Arabidopsis genes, but their

Table 2. The top 20 significant DEGs in the eCO, and ICO, conditions

function in the CO₂ response was unclear.

Only 1 DEG that was expressed more in the ICO_2 group was listed in the top 20 significant DEGs, and it was a homolog of nine-cis-epoxycarotenoid dioxygenase 4 (NCED4). NCED4 is an important enzyme associated with the synthesis of the plant hormone, abscisic acid (ABA), which is involved in many plant stress responses (Seo and Koshiba 2002). The downregulation of an NCED4 homolog under eCO₂ was also observed in *P. massoniana* (Wu et al. 2019). Thus, the abundance of NCED transcripts under ICO_2 observed in this study might be due to the downregulation of NCED under eCO₂. However, it is also possible that ABA synthesis was upregulated under ICO_2 , as ABA participates in the acclimation to low CO₂ conditions (You et al. 2020). Although further experiments are required, ABA might have a common biological function in ICO_2 acclimation

Table 5. GO lernis enriched in the eCO ₅ or ICO ₅ conditio	tions	conditi	or ICO ₂	eCO ₂	in th	enriched	terms	GO	ble 3.	٢a
--	-------	---------	---------------------	------------------	-------	----------	-------	----	--------	----

2	-	
Enriched GO term	adjusted	Number
	<i>p</i> -value	of genes
enriched under eCO ₂		
molecular function		
GO:0004478 methionine adenosyltransferase activity	0.008	2
biological process		
GO:0009644 response to high light intensity	0.015	5
GO:0006556 S-adenosylmethionine biosynthetic process	0.017	2
GO:0046244 salicylic acid catabolic process	0.050	2
cellular component		
GO:0005618 cell wall	0.029	11
GO:0030312 external encapsulating structure	0.035	11
enriched under ICO ₂		
biological process		
GO:0009813 flavonoid biosynthetic process	0.049	4
GO:0006949 syncytium formation	0.050	2
cellular component		
GO:0009507 chloroplast	0.024	8
GO:0009536 plastid	0.030	8

Contig ID	adjusted <i>p</i> -value	log ₂ FoldChange (lCO ₂ /eCO ₂)	Bestmatch in Arabidopsis reference ^a	e-value	score
CJcdiox014701	1.15E-7	-1.250	no blast hit		
CJcdiox024976 ^a	2.57E-7	-0.565	AT3G17611 RHOMBOID-like protein 14	1.00E-8	58.5
CJcdiox033608 ^a	2.74E-6	-0.684	AT3G17611 RHOMBOID-like protein 14	10.00E-12	66.2
CJcdiox010378	2.43E-5	-1.481	AT4G27670 heat shock protein 21	1.00E-61	198
CJcdiox033941	6.29E-5	-0.555	AT3G29075 glycine-rich protein	2.00E-10	62
CJcdiox013528	8.68E-5	-0.736	no blast hit		
CJcdiox029450	1.55E-4	-1.282	AT5G63130 Octicosapeptide/Phox/Bem1p family protein	1.00E-24	99.8
CJcdiox018740	2.73E-4	-0.510	AT1G64980 Nucleotide-diphospho-sugar transferases superfamily protein	3.00E-126	376
CJcdiox031766	9.04E-4	-0.665	AT4G15130 phosphorylcholine cytidylyltransferase2	5.00E-136	398
CJcdiox011737	1.15E-3	-1.025	no blast hit		
CJcdiox023401	1.57E-3	-0.826	no blast hit		
CJcdiox023758	1.69E-3	-0.606	AT5G62390 BCL-2-associated athanogene 7	6.00E-17	84.7
CJcdiox009901	1.69E-3	0.760	AT4G19170 nine-cis-epoxycarotenoid dioxygenase 4 (NCED4)	0	603
CJcdiox014248	1.69E-3	-1.141	AT5G24530 2-oxoglutarate (2OG) and Fe(II)-dependent oxygenase	2.00E-58	202
CJcdiox032192	1.69E-3	-0.623	AT3G17390 S-adenosylmethionine synthetase family protein	0	729
CJcdiox032675	1.69E-3	-0.752	no blast hit		
CJcdiox030771	1.72E-3	-0.752	no blast hit		
CJcdiox002246	1.72E-3	-0.548	AT1G08200 UDP-D-apiose/UDP-D-xylose synthase 2	1.00E-118	369
CJcdiox004009	1.85E-3	-0.769	AT2G25270 transmembrane protein	1.00E-139	431
CJcdiox014524	1.86E-3	-0.498	AT2G17840 EARLY-RESPONSIVE TO DEHYDRATION 7	1.00E-119	381

a. These two contigs did not share a significant sequence similarity (e-value $< e^{-5}$).

among seed plants.

GO enrichment analysis of the DEGs responding to CO₂

GO term enrichment analysis was also conducted for the detected DEGs (Table 3). Six GO terms were enriched among the DEGs that were more highly expressed in the eCO_2 conditions, whereas 4 GO terms were enriched among the genes more highly expressed under lCO_2 conditions. The enriched terms were different between the two CO_2 treatment conditions, suggesting that different molecular pathways were activated. Although they were statistically significant, the number of genes annotated with enriched GO terms was limited for biological process or molecular function. In contrast, genes annotated with enriched GO terms as cellular component were more frequent among the detected DEGs.

The functional roles of genes with enriched GO terms in the eCO₂ response are unknown. In long-term eCO₂ treatment, the genes related to cell wall loosening and cell expansion are upregulated in the leaves of angiosperm species and contribute to growth stimulation (Huang and Xu 2015). Genes annotated with "cell wall" were also enriched under eCO₂ conditions in this study, such as xyloglucan endotransglycosylase/hydrolase and pectin esterase. They are involved in cell wall loosening and may respond quickly to eCO₂ at a transcriptional level in C. japonica as an angiosperm species. In contrast, among the genes with enriched GO terms under ICO₂, one gene with the GO term "syncytium formation" has roles in the regulation of stomata opening (AT1G69530, Zhang et al. 2011). Stomatal opening is one of the quickest responses in plants to low CO₂ conditions; therefore, increased expression of these genes under ICO₂ conditions is plausible. Genes annotated with "chloroplast" and "plastid" were also enriched among the DEGs that were more highly expressed under the 1CO₂ conditions. Genes functioning in chloroplasts might be subjected to regulation at the transcription level by short-term CO₂ treatments.

DEGs in photosynthesis and photorespiration pathways

As photosynthesis and photorespiration are expected to be regulated in opposite directions under eCO_2 and ICO_2 conditions, the genes involved in these pathways were surveyed among the detected DEGs. In *Arabidopsis*, there are 221 and 40 genes annotated with GO terms related to "photosynthesis" and "photorespiration," respectively. Approximately 70% of those genes were expressed in samples analyzed in this study; however, only one DEG was annotated with the GO term "photosystem stoichiometry adjustment." This suggested that the expression of most photosynthesisor photorespiration-related genes was not affected by shortterm treatments with either CO_2 concentration. The CO_2 concentrations applied in this study are close to the natural range of fluctuation and thus did not exert a strong stress response in the seedlings. Another explanation may be that they are regulated in a post-transcriptional manner to enable a quick response to CO_2 fluctuations, as reported in angiosperm species (Liu et al. 2016).

Only one DEG annotated with the photosynthesis-related term was more highly expressed under $1CO_2$ conditions (p = 0.036). It was homologous to sigma factor 1 (*SIG1*, AT1G64860), a nuclear-encoding subunit of chloroplast RNA polymerase (Shimizu et al. 2010). The transcription level of *SIG1* is related to the transcription of the *psaA*, *psbB*, *psbE*, *rbcL*, and *rpoB* operons encoded in the chloroplast (Macadlo et al. 2020). The expression of these chloroplastic genes was not significantly affected after 90 min of exposure to the CO₂ conditions in the analyzed samples. It may have a role in balancing photosynthesis against CO₂ fluctuations, but careful analysis will be required in the future.

Conclusion

In this study, transcripts that quickly respond to eCO_2 and ICO_2 concentrations in *C. japonica* were identified. The observed differences in the expression levels between the eCO_2 and ICO_2 conditions could arise from the downregulation or upregulation of genes in each condition. Including samples under aCO_2 will give a more precise estimation of the transcriptional regulation of these genes. Furthermore, the magnitude of the difference was not large in most cases and varied among individuals. More samples with diverse genetic backgrounds will be required to validate the observed differences. Nevertheless, the results obtained in this study provide the first view of the rapid response in the transcriptome to CO_2 changes and will contribute to future studies aimed at unraveling the molecular mechanisms of CO_2 adaptation in *C. japonica*.

Acknowledgments

We thank Drs. Mitsuru Nishiguchi, Takafumi Miyama, Ko Tahara [Forestry and Forest Products Research Institute (FFPRI)], and Dr. Yuji Suzuki (Iwate University) for their helpful discussions. This work was supported by the FFPRI (research grant no. 201705). We would like to thank Enago for the English language editing.

References

Ainsworth, E. A. and Long, S. P. (2005) What have we learned from 15 years of free-air CO₂ enrichment (FACE)? A meta-analytic review of the responses of photosynthesis, canopy properties and plant production to rising CO₂. New Phytol., 165, 351–371.

- Cox, M. P., Peterson, D. A. and Biggs, P. J. (2010) SolexaQA: At-a-glance quality assessment of Illumina secondgeneration sequencing data. BMC Bioinformatics, 11, 485.
- Eisenhut, M., Bräutigam, A., Timm, S., Florian, A., Tohge, T., Fernie, A. R., Bauwe, H. and Weber, A. P. M. (2017) Photorespiration is crucial for dynamic response of photosynthetic metabolism and stomatal movement to altered CO₂ availability. Mol. Plant, 10, 47–61.
- Fu, L., Niu, B., Zhu, Z., Wu, S. and Li, W. (2012) CD-HIT: accelerated for clustering the next-generation sequencing data. Bioinformatics, 28, 3150–3152.
- Grabherr, M. G., Haas, B. J., Yassour, M., Levin, J. Z., Thompson, D. A., Amit, I., Adiconis, X., Fan, L., Raychowdhury, R., Zeng, Q., Chen, Z., Mauceli, E., Hacohen, N., Gnirke, A., Rhind, N., di Palma, F., Birren, B. W., Nusbaum, C., Lindblad-Toh, K., Friedman, N. and Regev, A. (2011) Full-length transcriptome assembly from RNA-Seq data without a reference genome. Nat. Biotechnol., 29, 644–652.
- Higuchi-Takeuchi, M., Kondo, T., Shimizu, M., Kim, Y. W., Shinozaki, K. and Hanada, K. (2020) Effect of small coding genes on the circadian rhythms under elevated CO₂ conditions in plants. Plant Mol. Biol., 104, 55–65.
- Hiraoka, Y., Iki, T., Nose, M., Tobita, H., Yazaki. K., Watanabe, A., Fujisawa, Y. and Kitao, M. (2017) Species characteristics and intraspecific variation in growth and photosynthesis of *Cryptomeria japonica* under elevated O₃ and CO₂. Tree Physiol., 37, 733–743.
- Huang, B. and Xu, Y. (2015) Cellular and molecular mechanisms for elevated CO₂-regulation of plant growth and stress adaptation. Crop Sci., 55(4), 1405–1424.
- Hwang, J. E., Kim, Y. J., Jeong, D. Y. and Park, H. C. (2019) Transcriptome analysis of Korean fir (*Abies koreana*) in response to elevated carbon dioxide and high temperature. Plant Biotechnol. Rep., 13, 603–612.
- Kanani, H., Dutta, B. and Klapa, M. I. (2010) Individual vs. combinatorial effect of elevated CO₂ conditions and salinity stress on *Arabidopsis thaliana* liquid cultures: comparing the early molecular response using time-series transcriptomic and metabolomic analyses. BMC Syst. Biol., 4, 177.
- Kim, T.L., Chung, H., Veerappan, K., Lee, W. Y., Park, D. and Lim, H. (2021) Physiological and transcriptome responses to elevated CO₂ concentration in *Populus*. Forests, 12(8), 980.
- Kopylova, E., Noé, L. and Touzet, H. (2012) SortMeRNA: fast and accurate filtering of ribosomal RNAs in metatranscriptomic data. Bioinformatics, 28, 3211–3217.
- Li, H. and Durbin, R. (2009) Fast and accurate short

read alignment with Burrows-Wheeler transform. Bioinformatics 25, 1754–1760.

- Liao, Y., Smyth, G. K. and Shi, W. (2014) featureCounts: an efficient general purpose program for assigning sequence reads to genomic features. Bioinformatics, 30, 923–930.
- Liu, J., Zhang, J., He, C. and Duan, A. (2014) Genes responsive to elevated CO₂ concentrations in triploid white poplar and integrated gene network analysis. PLOS ONE, 9, e98300.
- Liu, L., Shen, F., Xin, C. and Wang, Z. (2016) Multi-scale modeling of *Arabidopsis thaliana* response to different CO₂ conditions: from gene expression to metabolic flux. J. Integr. Plant Biol., 58, 2–11.
- Love, M. I., Huber, W. and Anders, S. (2014) Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol., 15, 550.
- Macadlo, L. A., Ibrahim, I. M. and Puthiyaveetil, S. (2020) Sigma factor 1 in chloroplast gene transcription and photosynthetic light acclimation. J Exp. Bot., 71(3), 1029–1038.
- Martin, M. (2011) Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet. J., 17, 10–12.
- Miyazawa, S.-I., Nishiguchi, M., Futamura, N., Yukawa, T., Miyao, M., Maruyama, T. E. and Kawahara, T. (2018) Low assimilation efficiency of photorespiratory ammonia in conifer leaves. J. Plant Res., 131, 789–802.
- Prentice, I. C., Farquhar, G.D., Fasham, M. J. R., Goulden, M. L., Heimann, M., Jaramillo, V. J., Kheshgi, H. S., Le Quéré, C., Scholes, R. J. and Wallace, D. W. R. (2001) The carbon cycle and atmospheric carbon dioxide. In: J. T. Houghton, Y. Ding, D. J. Griggs, M. Noguer, P. J. van der Linden et al. (eds.), Climate Change 2001: The Scientific Basis. Contributions of Working Group I to the Third Assessment Report of the Intergovernmental Panel on Climate Change (pp. 183–238). Cambridge Univ. Press.
- R Core Team (2021). R: Language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria, https://www.R-project.org/, (accessed 2021-06-28).
- Raudvere, U., Kolberg, L., Kuzmin, I., Arak, T., Adler, P., Peterson, H., and Vilo, J. (2019) g:Profiler: a web server for functional enrichment analysis and conversions of gene lists (2019 update). Nucleic Acids Res., 47, W191– W198
- Schmieder, R. and Edwards, R. (2011) Quality control and preprocessing of metagenomic datasets. Bioinformatics, 27, 863–864.
- Schneider, M., Bairoch, A., Wu, C. H. and Apweiler, R. (2005) Plant protein annotation in the UniProt Knowledgebase. Plant Physiol., 138, 59–66.

- Seo, M. and Koshiba, T. (2002) Complex regulation of ABA biosynthesis in plants. Trends Plant Sci., 7, 41–48.
- Shimizu, M., Kato, H., Ogawa, T., Kurachi, A., Nakagawa, Y. and Kobayashi, H. (2010) Sigma factor phosphorylation in the photosynthetic control of photosystem stoichiometry. Proc. Natl. Acad. Sci. U. S. A., 107, 10760–10764.
- Taylor, G., Street, N. R., Tricker, P. J., Sjödin, A., Graham, L., Skogström, O., Calfapietra, C., Scarascia-Mugnozza, G. and Jansson, S. (2005) The transcriptome of *Populus* in elevated CO₂. New Phytol., 167, 143–154.
- Wang, D., Heckathorn, S. A., Wang, X. and Philpott, S. M. (2012) A meta-analysis of plant physiological and growth responses to temperature and elevated CO₂. Oecologia, 169, 1–13.
- Wei, H., Gou, J., Yordanov, Y., Zhang, H., Thakur, R., Jones, W. and Burton, A. (2013) Global transcriptomic profiling of aspen trees under elevated [CO₂] to identify potential molecular mechanisms responsible for enhanced radial growth. J. Plant Res., 126, 305–320.
- Wu, F., Sun, X., Zou, B., Zhu, P., Lin, N., Lin, J. and Ji, K. (2019) Transcriptional analysis of Masson pine (*Pinus massoniana*) under high CO₂ stress. Genes (Basel), 10, 804.
- You, L., Zhang, J., Li, L., Xiao, C., Feng, X., Chen, S., Guo, L. and Hu, H. (2020) Involvement of abscisic acid, ABI5, and PPC2 in plant acclimation to low CO₂. J. Exp. Bot., 71, 4093–4108.
- Zhang, X. Q., Wei, P. C., Xiong, Y. M., Yang, Y., Chen, J. and

Wang, X. C. (2011) Overexpression of the *Arabidopsis* α -expansin gene AtEXPA1 accelerates stomatal opening by decreasing the volumetric elastic modulus. Plant Cell Rep., 30(1), 27–36.

Supplementary data

Supplementary data can be found at https://www.ffpri.affrc.go.jp/pubs/bulletin/463/463toc-en.html

Fig. S1. Correlation between 20 RNA-Seq samples based on a spearman correlation analysis.

The deeper blue represents the higher correlation. The sample names are indicated on the left and top of the heatmap. Each cell shows the correlation between two samples. The correlation coefficients of two technical replicates are highlighted by red squares. The sample abbreviations are listed in Table 1. The suffix indicates the replicate number (rp1 or rp2).

Fig. S2. Hierarchical clustering of all samples based on the expression pattern of the transcripts.

Prefix denotes CO_2 conditions, and the suffix indicates the replicate number (rp1 or rp2).

Table S1. Summary statistics of read processing

a. Percentages against the total number of reads after quality control are shown.

b. Correlation coefficients between two replicates.

異なる二酸化炭素濃度で短時間処理した スギ針葉のトランスクリプトーム比較

伊原 徳子^{1)*}、飛田 博順²⁾、宮澤 真一¹⁾

要旨

二酸化炭素濃度によって発現が変動する遺伝子を明らかにするために、スギ針葉を用いてトランスクリ プトーム解析を行った。得られた RNA リードの de novo アセンブリにより 35,211 の遺伝子配列が得られた。 そのうち、113 遺伝子が高 CO₂、30 遺伝子が低 CO₂ で高発現していた。推定された遺伝子の機能から、高 CO₂ と低 CO₂ では異なる分子経路の遺伝子発現が活性化されていることが示された。光合成や光呼吸の遺 伝子の転写は大きく影響されなかったが、葉緑体にコードされる遺伝子の転写を制御する遺伝子の発現が 低 CO₂ 条件下で高くなっていた。検出された変動遺伝子の中に葉緑体に関連する機能を持つ遺伝子が多 かったこととあわせ、葉緑体関連の遺伝子の転写調節が CO₂ 変化に対する初期応答の一つであることが 示唆された。

キーワード:二酸化炭素、スギ、トランスクリプトーム

原稿受付:令和3年7月2日 原稿受理:令和4年5月12日 1)森林総合研究所樹木分子遺伝研究領域 2)森林総合研究所植物生態研究領域 *森林総合研究所樹木分子遺伝研究領域 〒305-8687茨城県つくば市松の里1

短 報 (Short Communication)

排水用竹粗朶の製作および設置コスト算出と歩掛の検討

山口智^{1)*}、田中良明¹⁾、鈴木秀典¹⁾

要旨

横断排水溝としての竹粕朶を製作・設置する歩掛を明らかにするため、所要時間を算出するとともに、 そのコストを明らかにした。製作過程をビデオ撮影して得た作業時間から、竹粗朶製作の歩掛は 0.032– 0.049 人/体、設置段階まで含めた横断排水溝の歩掛は 0.067–0.084 人/基となった。想定する竹粗朶の製 作にかかる作業時間を組み合わせ、材料費および燃料油脂代まで含めて積算した竹粗朶製作のコストは、 1,137–1,649 円/体、設置段階まで含めた横断排水溝のコストは 1,886–2,398 円/基となった。

キーワード:横断排水溝、モウソウチク、粗朶、製作コスト、作業分析、歩掛

背景と目的

伐採搬出や造林保育を行っていくにあたって、林道や 作業道は必要なインフラといえる。しかし、これらを作 設した際、特に作業道では舗装を行わないことから、雨 水や湧水などにより発生する路面の洗掘が問題となる。 洗掘対策としてこまめな排水が必要であり、その手法の 一つとして作業道の横断方向に溝を掘って路面上の水を 谷側に排出させる方法がある。これは波型排水が轍によっ て機能しなくなった際や地形的に水が溜まりやすい箇所 において特に有効であると考えられる。ただし、溝によっ て段差ができるため通行する車両が衝撃を受け、ハンド ルをとられやすい、荷崩れの恐れがある、などの問題が ある。

そこで筆者らは、「近年、竹林の放置とその拡大現象が 顕著である」(鳥居・奥田 2010) ことが問題となっている モウソウチクを割って束にしたものを溝にはめ込むこと で通水可能にしながら車両の通行を容易にする手法を試 行し、有用性を明らかにした (山口ら 2010)。モウソウチ クを割って束にしたものを以後では竹粗朶と称する。竹 粗朶の仕様は長さ約3m、太さは15-20 cm 程度の大きさ である。モウソウチクを割って割竹にしたものや先梢部、 枝などを化学繊維のロープで結束して製作される。これ らの通水性能については、割竹のみを束ねたものと先梢 部や枝も含めたもので比較している (山口ら 2020)。モウ ソウチクなどの竹類を森林土木構造物に利用する試みは 他でも行われ、暫定歩掛が製作されている ((社)日本治 山治水協会・日本林道協会 2013)。竹粗朶においても普 及を進めていくためには歩掛作成が必要である。そこで、 これらを達成するために竹粗朶の製作工程における功程 調査を行うとともに必要となる資材・油脂類の数量につ いても調査することで製作コストと設置コスト、歩掛に

ついて試算し、他の材料を使用した際と比較して優位性 があるか検討した。

実験方法

竹粗朶を製作する様子を作業時間の分析を行うために ビデオ撮影し、動画を後から再生して作業ごとに区切っ て秒数を計上した(岡 2001)。2人作業のときは1人1人 の作業時間を合算した。作業に携わったものは3名おり、 A、B、Cとする。Aは、森林作業はほとんど行わないが、 竹粗朶の構造や製作方法については熟知している。Bと Cは、森林作業に普段から携わっているが、構造や製作 方法は製作前に説明を受けた程度である。

竹林の皆伐などによって大量に伐採したものを利用す る際には、1 番玉だけを用いた竹粗朶の製作が可能であ ると考えられるが、伐採された竹の本数が少ない場合に は、玉切りされたモウソウチク1本分をチェーンソーで 枝払いして製作することも想定し、使用する部分や本数 に違いのある3種類を製作した。製作した竹粗朶の内容 と撮影した年月日は次のとおりである。なお、玉切りは すべて約3mで行っている (Table 1)。

(α) 1 番玉(枝なし) 3 本分の割竹による竹粗朶を 2018 年9月5日に1体分、同11日に2体分。Aが担当。(Photo 1)

(β) 1 番玉(枝なし) 1 本分と2 番玉(チェーンソーで枝 を払い、その枝は使用せず) 1 本分の割竹と割らずにその まま入れる先梢(枝付き、枝払い無)1本による竹粗朶を 2019 年 1 月 17 日に3 体分。B と C が担当。(Photo 2)

(γ)1番玉(枝なし)1本分と2番玉(枝は鉈で払い、粗 朶に使用)1本分の割竹と割らずにそのまま入れる先梢 (枝付き、枝払い無)1本による竹粗朶を2019年7月11 日に3体分。Aが担当。(Photo 3)

撮影された動画を再生して、それぞれ以下の作業要素

原稿受付:令和3年9月22日 原稿受理:令和4年5月25日

¹⁾ 森林総合研究所 林業工学研究領域

^{*} 森林総合研究所林業工学研究領域 〒 305-8687 茨城県つくば市松の里1

Photo 1. (α) 1 番玉 (枝なし) 3 本分の割竹による竹粗朶

Photo 2. (β) 1 番玉 (枝なし) 1 本分と 2 番玉 (チェーンソー で枝を払い、その枝は使用せず) 1 本分の割竹と 割らずにそのまま入れる先梢 (枝付き、枝払い無) 1 本による竹粗朶

Photo 3. (y) 1番玉 (枝なし) 1本分と2番玉 (枝は鉈で払い、 粗朶に使用) 1本分の割竹と割らずにそのまま入 れる先梢 (枝付き、枝払い無) 1本による竹粗朶

Table 1. 製作した竹粗朶の仕様一覧

に分類した。

(α) 稈割り、そろえ並べ、結束、その他

(β)機械枝払い、稈割り、先梢追加、そろえ並べ、結束、 その他

(γ) 人力枝払い、稈割り、先梢追加、枝入れ、そろえ並べ、 結束、その他

それぞれの作業要素についての説明を以下で行う。機 械枝払いはチェーンソーで枝払いをする作業である。竹 **稈1本分の全時間を合算した。人力枝払いは鉈で枝払い** をする作業である。竹稈1本分の全時間を合算した。稈 割りは1番玉や2番玉を竹割器で割る作業である。竹稈 1本ごとの時間を抽出した。先梢追加は先梢部を加える 作業である。竹粗朶1体分の全時間を合算した。そろえ 並べは材料をそろえて並べる作業である。竹粗朶1体分 の全時間を合算した。結束はロープで割竹や枝、先梢を 結束する作業である。(α)と(β)では3か所結束したが、 製作後移動させる際に結束箇所を持つことで不便を感じ たため、(y)では中心部の結束箇所2か所を含む4か所と したことから、竹粗朶1体分の全時間を合算し、結束箇 所数で割ることとした。その他は、本来、製作工程で不 要だった動きについて合算したもので、小休止する、順 番を確認する、新たに必要になった道具を取りに行く、 が含まれる。竹粗朶1体分の全時間を合算した。

設置の際には素掘りの横断排水溝を掘削して溝に嵌合 するように設置を行うことから、既存の歩掛を基に設置 の作業時間とコストを検討した。

結果と考察

各竹粗朶の実作業時間は以下のとおりであった。 (α)1体目:601秒、2体目:990秒、3体目:875秒。 (β)1体目:914秒、2体目:495秒、3体目:572秒。 (γ)1体目:1185秒、2体目:898秒、3体目:1241秒。 各作業要素の作業時間を集計した結果、各作業要素の 平均値は Table 2 のようになった。機械枝払いと人力枝払 いでは、機械枝払いは43.0秒/本であるのに対して、人 力枝払いは178.7秒/本と約4.2倍の時間がかかった。稈 割りは1番玉も2番玉も含まれるが、1番玉は合わせて

Table 2. 作業要素別の平均作業時間

長さ	1番玉(枝なし)	2番玉	枝払い	枝挿入	先梢挿入	作業要素	平均作業時間	繰り返し数
(α) 3 m	割竹(約3m)3本分	なし	なし	なし	なし	人力枝払い	178.7秒/程1本	3
(β) 3 m	割竹(約3m)1本分	割竹 (3 m)1 本分	機械	なし	あり	機械枝払い	43.0秒/稈1本	3
(y) 3 m	割竹(約3m)1本分	割竹 (3 m)1 本分	鉈	あり	あり	稈割り	139.7秒/稈1本	21
使用した	竹:全長が 10 m 前後。	、太さについて、	今回は実	際に測定	ミしていな	先梢追加	24.0 秒 / 体	6
	かった。		,,	si/arr = 1/13/4		枝入れ	105.3 秒 / 体	3
参考まで	に、ここで製作した	↑相朶の材料のモ	ウソウチ	クが収穫	薄された森	そろえ並べ	66.7秒/体	9
木総合研	「究所構内で同様に収耗	薄されたモウソウ	チクの寸	法を紹介	する。な	結束	82.0 秒 / 箇所	30
お、元口	径と末口径は長径と短	豆径の平均である。	/ / - 1			その他	76.8秒/体	9
番玉:	長さ 326 cm、元口径 1	2.50 cm、末口径 8	8.13 cm					
番玉:	長さ 326 cm、元口径 8	3.07 cm、末口径 5.	01 cm					
番玉:	長さ 327 cm. 元口径 5	501 cm. 末口径 1 ′	76 cm					

先梢部:長さ 195 cm、元口径 1.69 cm

15 本、2 番玉は合わせて 6 本使用した。両者に違いがな いか Mann-Whitney 検定を行った。1 番玉と 2 番玉の本数 をそれぞれ n_1 、 n_2 、統計量を U とする。 $n_1 = 15$ 、 $n_2 = 6$ で あることから $n_1 \cdot n_2 = 90$ となり、U = 64、両側確率 P < 0.05 となる有意点は {19,71} で、19 < U < 71 により両者に偏 りがないという仮定は棄却できない。そこで以下ではま とめて竹稈とする。先梢追加は 24.0 秒 / 体に対して枝入 れは 105.3 秒 / 体と約 4.4 倍の時間がかかったが、これは 先梢のパーツが 1 つであるのに対して、枝は何本も枝払 いされたところから拾って加えることがその原因と考え られる。「その他」は順番を確認する、道具を取りに行く といったイレギュラーな要素であることから、作業が順 調に進んだ場合にはこれは限りなく小さくなると考えら れる。

ここで、竹粗朶の構成要素の略称として、竹稈・先梢・ 枝の組み合わせを「枝込」、竹稈・先梢の組み合わせを「枝 抜」、竹稈3本の組み合わせを「割3」とする。枝払いの 略称としてチェーンソーを使用した機械枝払いの場合を 「機械」、鉈を使用した人力枝払いの場合を「鉈」、材料が 現場に搬入される際にあらかじめ2番玉の枝が払われて いるなど、製作時に枝払いが必要ない場合は枝払いを行 わないことから「無」とする。結束箇所数についての略称は「X 結 (例:3結、4 結)」とする。組み合わせの呼称は以上の略称を用いて、例えば、竹稈・先梢・枝の組み合わせにチェーンソー使用で枝払いをして3か所で結束したものを枝込 + 機械 +3 結とする。

Table 2 をもとにして竹粗朶の構成要素、枝払い方法、 結束箇所数の違いごとに所要時間を積算すると Fig. 1 の ようになる。結束箇所が 1 か所増えることで所要時間に 82.0 人・秒の増加が見込まれる。

以上から、竹粗朶の製作部分の所要時間を試算すると、 比較したパターンのうち最も所要時間が短いのは、枝抜 + 無 +3 結で 693 人・秒となる。最も所要時間が長くなる のは、枝込 + 鉈 +4 結で 1,059 人・秒となった。この所要 時間から1日6時間労働としたときの歩掛は、0.032-0.049 人/体となる。

竹粗朶の製作コストとしては、1. 材料であるモウソウ チクの入手コスト(これに玉切りまでのコストを含む)、2. モウソウチクを割って束ねるまでのコスト、3. 結束材料 であるロープの価格、4. チェーンソーを使用した場合に は燃料油脂代、が含まれると考えられる。このうち、1. は 入手ルートが多岐にわたると考えられるため、本論での

◎鉈払い 図機械払い ■桿割り ■先梢追加 ■枝入れ @そろえ並べ 図結束 回その他

Fig. 1. 作業要素別平均値をもとにした各組合せにおける予測所要時間 左の系列名の略称の注釈: α、β、γ:作業要素抽出のために実際に製作したタイプ (Photo1-3) 枝込:1番玉と2番玉、2番玉から落とされた枝、先梢による竹粗朶 枝抜:1番玉と2番玉と先梢による竹粗朶 割3:1番玉の竹稈3本の割竹による竹粗朶 機械:チェーンソーを使用して枝払いを実施 錠を使用し手動での枝払いを実施 無:材料が現場に搬入される際にあらかじめ2番玉の枝が払われているなど、製作時に枝払いの必要が無い場合 3結 or 4 結:結束箇所数

竹粗朶製作コストの検討は 2. と 3. と 4. について行う。

所要時間を基準賃金と突き合わせて人件費を算出す る。例として静岡県有林における普通作業員の人件費は 21,400円/日、特殊作業員の人件費は22,600円/日(静岡 県経済産業部森林・林業局森林整備課2021)であり、こ こではいずれも所定労働時間内8時間当たり金額(静岡 県交通基盤部建設経済局技術調査課2021)である。チェー ンソーで枝払いをする場合のみに特殊作業員の人件費 を用いる。歩掛計算の際は1日の実働時間を6時間(岡 2001)とした。上記の方法により所要時間から人件費を算 出すると、最も所要時間が短い、枝抜+無+3結による竹 粗朶製作は、所要時間が693人・秒=0.1925人・時間= 0.03208人・日であることから、人件費は687円となる。 これに対して最も所要時間が1,059人・秒=0.294人・時間 = 0.049人・日であることから、1,049円となる。

結束に使用されるロープの価格について、インターネット通信販売の市況価格によれば使用したポリエステル9 mm 径のトラックロープ 20 m の価格は税抜きで 1,500 円 -3,000 円である。そこで、高く見積もっても1 m あたり 150 円、結束 1 か所で約1 m 使用するため、3 結で 450 円、 4 結で 600 円と仮定できる。

チェーンソーを使用した場合には燃料油脂代が追加さ

れる。混合油の価格を136円/L、チェーンオイルの価格 を290円/L(静岡県経済産業部森林・林業局森林整備課 2021) とする。作業者からの聞き取りによると、使用し たチェーンソーには混合油 300 ml、チェーンソーオイル 150 ml 入れることができる。作業者によれば、モウソウ チク10本の伐倒・造材と竹3本分の枝払いを通して、タ ンク容量に対して消費したのは半分以上7割未満の範囲 ということであった。そのうち、枝払いで使用されたの は 60-70%であった。これは枝払い時には連続してエン ジンをふかすために燃料の消費量が多くなるということ であった。この聞き取りから、燃料の消費は全体でタン ク容量比 60%、その内訳として、枝払いで 65%であった と仮定して燃料消費量を計算したところ、伐倒・造材で は混合油 63 ml、チェーンソーオイル 31.5 ml、枝払いで は混合油 117 ml、チェーンソーオイル 58.5 ml となった。 この結果と燃料油脂代の単価から、136(円/L)×117(ml) / 1000 = 15.912、290 (円 / L) × 58.5 (ml) / 1000 = 16.965、 15.912 + 16.965 = 32.877 であることから、竹3本分の枝 払いにかかる分の費用は33円、竹1本あたりに直すと 11円となった。

以上の要因を合算した結果、Fig. 2 のようになる。最も 安価に制作できるのは竹粗朶 1 体当たりモウソウチク 1 本分の竹稈・先梢を使用する枝抜 + 無 +3 結で 1,137 円/

					0	200	400	600	800	1000	1200	1400	1600	1800
	枝 込	Į	(王) (二)	3結								1	,418	
	枝込) 雜	〔莨	3 結	`					1		1 ,3	363	
	枝 込	Į	兼	3結	`							1,241		
	枝 抜	Ś	(引 (と)	3結								1,31	4	
đ	枝 抜	《 變	〔〔	3結	 							1,253		
	枝 抜	4	兼	3結	`						1,1	37		
ъ	重	Ì	兼	3結								1,251		
Y	枝 込	1	(上) (上)	4 結									1	L,649
	枝 込) 變	〔莨	4 結	<u> </u>								1,5	599
	枝込	Į	兼	4 結]							1,32	2	
	枝 抜	Ś	(년) [27]	4 結									1,5 4	15
	枝 抜	総 総	減減	4 結									1,489	
	枝 抜	4	兼	4 結]						1	,218		
	ا) 7 1	兼	4 結]								1,482	

金額(円)

■入件費 ■燃料費 ■ロープ価格

Fig.2各組合せにおける費用と内訳

左の系列名の略称の注釈: α、β、γ:作業要素抽出のために実際に製作したタイプ (Photo1-3) 枝込:1番玉と2番玉、2番玉から落とされた枝、先梢による竹粗朶 枝抜:1番玉と2番玉と先梢による竹粗朶 割3:1番玉の竹稈3本の割竹による竹粗朶 機械:チェーンソーを使用して枝払いを実施 錠:鉈を使用し手動での枝払いを実施 無:材料が現場に搬入される際にあらかじめ2番玉の枝が払われているなど、製作 時に枝払いの必要が無い場合 3結 or 4結:結束箇所数 体であった。最も高くなるのは竹粗朶1体当たりモウソ ウチク1本分全部を使用する枝込+鉈+4結で1,649円/ 体であった。

設置の歩掛は次のように考えられた。素掘りの掘削は 国土交通省の積算パッケージ型積算基準にある人力土工 の歩掛(国土交通省 2012)によれば粘性土・砂・砂質土・ レキ質土における人力掘削(床掘り)歩掛は普通作業員で 3.9 人/10 m³であることからこれを採用した場合、一貫し て普通作業員が作業したとすると、0.15 m 幅、0.15 m 深 さの溝を路肩まで含めて 4 m 掘削した場合、掘削量は 0.09 m³となり、掘削分の歩掛は 0.035 人となる。これに竹粗 朶の製作部分の歩掛を含めると 0.067–0.084 人/基となる。

続いて、設置まで含んだコストについて検討を行う。 普通作業員の人件費は 21,400 円 / 日であることから、掘 削分の歩掛 0.035 人より、掘削分の人件費は 749 円になる。 これを加えることで粗朶製作から設置まですべて含んだ 経費は、例えば枝抜 + 無 +3 結タイプだと 1,886 円、枝込 + 鉈 +4 結タイプだと 2,398 円となる。

では、これがどれくらいコスト抑制につながるか考察 する。ただし、各工法における排水能力には差異がある と考えられるのでその点は考慮する必要がある。インター ネット通販サイトで検索すると、横断排水溝に用いるほ かの素材自体の価格は、コンクリート製U字溝では150 mm × 150 mm × 600 mm のもので 989 円であるから 3 m (= 3,000 mm) では 4,945 円、プラスチック製 U 字溝で 150 ×150×1,000 mmのもので5,700円であるから3m(=3,000 mm) では 17,100 円、グレーチングがこれらに対応するも のでは 600 mm で 1,590 円であるから 3 m (= 3,000 mm) 分では 7,950 円、1,000 mm で 2,190 円であるから 3 m(= 3,000 mm) 分では 6,570 円と、3 m 分を作ろうとした場 合にコンクリート U 字溝とグレーチングの組み合わせで 11,515円、プラスチック製U字溝とグレーチングの組み 合わせで 23,670 円と、材料費だけで 10,000 円を超える。 ゴムと丸太を用いる木製簡易横断排水溝については現場 で自作した場合には、10mあたりで12,118円としており、 2.5 m のもので 3,029 円 (静岡県経済産業部森林・林業局 森林整備課 2021) ということである。これに則り3mあ たりに直すと 3,635 円となる。ここでは丸太が現地発生 材のため0円と計上されており、今回試算を行った竹粗 朶の材料も現地発生材として0円で入手できると考えた 場合にはゴムと丸太を用いて現場施工を行う木製簡易横 断排水溝よりも安価で済むことになる。

おわりに

主に作業道の横断排水を目的とする竹粗朶を利用した 排水溝を作設することを仮定して、製作から設置までの 歩掛とコストを検討した。その結果、竹粗朶の製作にか かる歩掛は 0.032-0.049 人/体、材料費および燃料油脂代 まで含むコストは、1,137-1,649 円/体であった。既存の 歩掛から掘削時の人工数を算出した結果、設置段階まで 含めた横断排水溝の歩掛は 0.067-0.084 人/基、コストは 1,886-2,398 円/基、となった。この結果とほかの素材で 横断排水溝を設置する際のコストを比べてもほかの素材 による横断排水溝よりさらにコストを抑えた設置が可能 であった。竹粗朶を活用した排水処理方法を導入するこ とで路網の作設コストが安価で済み、排水処理が適切に 行われ、継続的に路網が利用可能になることで長期的に 事業体全体の収支改善につながると考えられる。

謝辞

材料であるモウソウチクの供給および製作、時間観測 を行うにあたり、森林研究・整備機構森林総合研究所企 画部研究管理科実験林室のご協力をいただいた。また、 本研究は(国研)森林研究・整備機構森林総合研究所交 付金プロジェクト(課題番号 201805)の研究成果である。 ここに記し謝意を示すものである。

引用文献

国土交通省 (2012) "施工パッケージ型積算基準 (平成 24 年 10 月 1 日以降入札を行う工事から適用)",国土交 通省,198-199, https://www.mlit.go.jp/tec/sekisan/sekkei/

pdf/240508sekoupackage2.pdf, (参照 2022-01-25).

- (社)日本治山治水協会・日本林道協会 (2013) 平成 25 年 版森林土木木製構造物施工マニュアル.(社)日本治 山治水協会・日本林道協会,276,302,316.
- 岡 勝 (2001) 生産性の把握. 全国林業改良普及協会編 "機 械化のマネジメント".(社)全国林業改良普及協会, 90-104.
- 岡 勝 (2001) 生産システムの選択. 全国林業改良普及協 会編 "機械化のマネジメント".(社)全国林業改良普 及協会,105–123.
- 静岡県経済産業部森林・林業局森林整備課 (2021) " 令 和3年度県営林事業設計単価表", 静岡県, 18pp, http://www.pref.shizuoka.jp/sangyou/sa-630/keneirin/ documents/tanka.pdf, (参照 2021-12-9).
- 静岡県交通基盤部建設経済局技術調査課 (2021) * 令和3
 年3月から適用する静岡県建設資材等価格表(公共工事設計労務)",静岡県,16pp,
 http://www.pref.shizuoka.jp/kensetsu/ke-130/tanka/
 documents/koujiroumur303.pdf,(参照 2021-12-9).
- 鳥居 厚志・奥田 史郎 (2010) タケは里山の厄介者か?. 森林科学, 58, 2-5.
- 山口 智・鈴木 秀典・田中 良明・池田 伸 (2010) 竹 製横断排水溝の製作と設置された作業道への影響. 関東森林研究, 61, 249–252.
- 山口 智·鈴木 秀典・田中 良明 (2020) 竹粗朶の通水性. 日本森林学会大会学術講演集, 131, 182.

Determination of production cost, installation cost and examination of steps involved in bundled bamboo for drainage

Satoshi YAMAGUCHI^{1)*}, Yoshiaki TANAKA¹⁾ and Hidenori SUZUKI¹⁾

Abstract

To determine the unit work efficiency required to fabricate and install the bamboo strips as cross-drainage ditches, the time required was calculated, and the fabrication and installation cost was determined. Based on the number of working hours spent on the fabrication process, that were obtained via video recording, the efficiency for unit work of the bamboo strips was estimated to be 0.032–0.049 man/unit, and the efficiency for unit work of the cross-drainage ditch including the installation stage was calculated to be 0.067–0.084 man/unit. The cost of the cross-drainage ditches including the installation stage was estimated to be 1,886–2,398 yen/unit, and that of the materials and fuel oil was estimated to be 1,137–1,649 yen/unit.

Key words : cross drainage facility, Moso bamboo, brush, production cost, working analysis, efficiency for unit work

Received 22 September 2021, Accepted 25 May 2022

1) Department of Forest Engineering, Forestry and Forest Products Research Institute (FFPRI)

* Department of Forest Engineering, FFPRI, 1 Matsunosato, Tsukuba, Ibaraki, 305-8687 JAPAN

短 報 (Short Communication)

Application of STH-PAS, a novel chromatographic visualization system of PCR products for rapid screening of male-sterile lines in *Cryptomeria japonica*

Momi TSURUTA^{1)*}, Saneyoshi UENO¹⁾, Tsuyoshi E. MARUYAMA¹⁾,

Tetsuji HAKAMATA²⁾ and Yoshinari MORIGUCHI³⁾

Abstract

To construct a simple method for the genotyping *MALE STERILITY 1* (*MS1*), a major causative gene of male sterility in Japanese cedar (*Cryptomeria japonica*), this study attempted to reduce the labor required for the post-PCR procedure using a single-stranded tag hybridization chromatographic printed array strip (STH-PAS), which allows for visual confirmation of PCR products. PCR was performed using tagged DNA- or biotin-modified primers to develop amplification products on stick membranes with complementary tags. After ~15 min the detection line was colored and the *MS1* genotype was determined. The diagnostic results were consistent with the electrophoresis results. STH-PAS can significantly reduce the time and labor required for *MS1* determination.

Key words : Cryptomeria japonica, DNA chromatography, male sterility, simple genotyping method, STH-PAS

Introduction

Since almost 40% of the population suffers from cedar pollinosis in Japan (Matsubara et al. 2020), the use of pollenfree (male-sterile) sugi (Japanese cedar, Cryptomeria japonica (L.f.) D.Don) cultivars that do not release pollen is expected as a countermeasure from the forestry field. However, the number of cultivars available for breeding is limited (Saito 2010). DNA marker-assisted selection is an effective way to search for breeding materials, namely, male-sterile trees or heterozygotes of the causative gene for male sterility (Mishima et al. 2018, Moriguchi et al. 2020). In addition to searching for breeding materials, a large supply of male-sterile seedlings is essential for its widespread use. Maruyama et al. (2022) developed a method for mass propagation of pollen-free sugi seedlings by somatic embryogenesis. Post-zygotic immature seeds are cultured as explants to regenerate the plantlets. During the process of somatic embryogenesis, it is necessary to determine whether the cultured cell line is male-sterile or fertile (Maruyama et al. 2020, Tsuruta et al. 2021). The development of a simple and rapid marker diagnostic method is necessary for the large-scale screening of breeding materials and the detection of male-sterility in large numbers of cultured cell lines.

Recently, *MALE STERILITY 1 (MS1)*, a major causative gene of male sterility in sugi was identified as a mutation in the CJt020762 gene (Hasegawa et al. 2021, Wei et al. 2021).

While comparing alleles (ms1) in male-sterile trees to those in normal wild types (Ms1), deletions of 4 bp in the first exon or 30 bp in the third exon were observed and were designated ms1-1 and ms1-2, respectively. Based on these mutations, DNA markers have been developed that can determine the presence of male-sterile alleles with 100% accuracy (Hasegawa et al. 2020). Currently, large-scale screening of sugi carrying male-sterile alleles has been performed using these markers (Moriguchi et al. 2020, Hasegawa et al. 2021, Watanabe et al. 2022). However, this method requires an expensive sequencer, and is not suitable for laboratories with insufficient genetic experiment equipment. Although Hasegawa et al. (2020) further developed allele-specific PCR markers that can be determined by agarose gel electrophoresis, discrimination is still labor-intensive. Furthermore, the determination of MS1 genotype requires PCR amplification of the wild-type and mutant alleles in separate tubes. Tsuruta et al. (2021) simplified the extraction of DNA and developed a new marker that can identify the MS1 genotype using a single PCR reaction and electrophoresis with agarose gel (one-step indel genotyping marker: ING marker).

This study attempted to simplify the post-PCR manipulation by using a single-stranded tag hybridization chromatographic printed array strip (STH-PAS, TBA Co., Ltd., Sendai, Japan) to further simplify *MS1* genotyping. This STH-PAS method is an alternative to electrophoresis where the presence or absence

Received 22 March 2022, Accepted 7 July 2022

¹⁾ Department of Forest Molecular Genetics and Biotechnology, Forestry and Forest Products Research Institute (FFPRI)

²⁾ Forestry and Forest Products Research Center, Shizuoka Prefectural Research Institute of Agriculture and Forestry

³⁾ Graduate School of Science and Technology, Niigata University

^{*} Department of Forest Molecular Genetics and Biotechnology, FFPRI,

¹ Matsunosato, Tsukuba, Ibaraki, 305-8687 JAPAN; E-mail: mtsuruta@ffpri.affrc.go.jp

of PCR amplified products is visually confirmed by developing the PCR product on a stick membrane (C-PAS). PCR is performed using primers with a tag DNA. The complementary tag DNA to the primer tag is fixed in a line (i.e., detection line) on C-PAS, and when the PCR product is captured by the tags the detection line turns blue. This method has been used for various diagnoses such as detection of microorganisms and identification of crop cultivars (e.g., Hayashi et al. 2013, Monden et al. 2014, Tian et al. 2014, Sasai et al. 2017). Thus, we applied STH-PAS to *MS1* genotyping of sugi and compared the results with conventional agarose gel electrophoresis to confirm the utility of this new method.

Materials and methods

The applicability of STH-PAS for *MS1* genotyping was verified using ING markers. The ING marker amplifies the *Ms1* and/or *ms1-1* allele-specific bands and a control band (Tsuruta et al. 2021). STH-PAS was designed to detect each allele-specific amplified product. A tag sequence was added to the allele-specific primers of the ING marker (F1-tag: Mt+rightPrimer_2_F, F4-tag: WT+leftPrimer_2_R), and the common primers (Mt+rightPrimer_2_R and WT+leftPrimer_2_F) were modified with biotin that binds to the colored beads in the latex solution (Table 1). C-PAS4 (C-PAS with four detection lines, TBA Co., Ltd.) was used to detect the tagged PCR amplified products.

DNA extracted using the modified CTAB method from the young leaves of sugi cultivars ('Ōi 7': Ms1/ms1-2, 'Suzu 2': Ms1/ms1-1) and somatic embryogenesis-derived cell lines (SSD-18: ms1-1/ms1-1, SSD-100: ms1-1/ms1-1, FO7-141: ms1-1/ms1-2, and FO7-144: ms1-1/ms1-2) whose genotype of MS1 has already been determined (Hasegawa et al. 2021, Tsuruta et al. 2021) were used in the experiments. Note that the allele ms1-2 does not have a 4 bp deletion and is therefore typed as *Ms1* by the ING marker. A total of 20 µL of reaction solution containing 10 µL of 2x QIAGEN Multiplex PCR Master Mix (QIAGEN, Hilden, Germany), 0.2 µM of each primer with a tag sequence or biotin modification, and template DNA (1-10 ng) was reacted under the following conditions: initial denaturation at 95°C for 15 min followed by 35 cycles of 95°C for 15 sec, 60°C for 30 sec, and 72°C for 30 sec, and a final extension at 72°C for 5 min.

Ten μ L of PAS Dilution Buffer (Mod.) (TBA Co., Ltd.) prepared to a NaCl concentration of 150 mM and 1 μ L of pre-

vortexed latex solution (TBA Co., Ltd.) were added to $10 \,\mu$ L of the PCR product. The C-PAS4 membrane stick was dipped into the mixture. The developments were performed under three conditions: 1) 26°C with 60% humidity, 2) 22°C with 38% humidity of laboratory (Fig. 1A), and 3) humidified simple developer bath (a 500 mL beaker filled with water about 5 mm, Fig. 1B). The remaining 10 μ L of the PCR reaction products were loaded into a 1.5% agarose gel for electrophoresis.

Results and discussion

Approximately 15 min after the PCR product was developed in C-PAS, the color of the detection line was observed and the MS1 genotype was successfully determined (Fig. 2A, B). The MS1 genotypes determined by STH-PAS were consistent with agarose gel electrophoresis (Fig. 2C) and previous marker analysis (Tsuruta et al. 2021). Although in electrophoresis, insufficient separation of close bands sometimes happens due to similar length of PCR products, in STH-PAS, the intervals between the detection lines were sufficient to precisely determine genotypes. Therefore, STH-PAS may be superior to discriminate multiple alleles with similar or even the same amplified fragment lengths. There were no differences in the development time (data not shown) and genotyping results depending on the experimental environment (Fig. 2A, B). However, C-PAS were slightly bluish at the 38% humidity condition (Fig. 2A). In low humidity (below 40%), nonspecific signals are reported to be occur (TBA Co., Ltd.). In

Fig. 1. An image of development of PCR products on a stick membrane under laboratory condition (A) and the humidified simple developer bath (B).

Table 1. Primer sequences and	modifications for	• detecting Ms1 and	d <i>ms1-1</i> alleles
-------------------------------	-------------------	---------------------	------------------------

	8	
Primer name	Sequence (5' to 3')	Modification
Mt+rightPrimer_2_F	CTCACTGGCCACAGTCACAC	F1-tag
Mt+rightPrimer_2_R	TGCAGGCAACTTATAATTAAGCAC	Biotin
WT+leftPrimer_2_F	GACGTCTTCTGCAACAACAATGG	Biotin
WT+leftPrimer_2_R	ACCCTGCGTGGGTGTTGATG	F4-tag

those cases, using the simple developer bath was effective (Fig. 2B). When nonspecific bands appear, it is necessary to further adjust the salt concentration of the PAS Dilution Buffer.

Agarose gel electrophoresis, the basic method for genetic experimentation, is simple, but requires several steps; gel preparation, loading, running, staining (in some cases), and photography. In contrast, the STH-PAS system reveals the results simply by mixing the developing solution with the PCR product and placing a stick membrane on the tube. The time required for results is also shorter than for electrophoresis (20–40 minutes). In addition, because STH-PAS does not use fluorescent dyes (toxic ethidium bromide or its substitutes) required for DNA visualization in agarose gel electrophoresis, it is advantageous and does not require waste liquid treatment.

In conclusion, STH-PAS can be applied to determine *MS1* genotypes by detecting deletions of 4 bp. In this report, a combination of STH-PAS and ING marker was used to detect two alleles of *MS1* (*Ms1* and *ms1-1*). Since C-PAS can simultaneously detect the presence of up to 12 PCR amplified products, it may be possible to construct a diagnostic system for the presence of *ms1-2*, another mutant allele of *MS1*, and other male sterility genes, namely, *MS2* to *MS4* (Saito 2010, Hasegawa et al. 2018) simultaneously. STH-PAS has also utilized for the detection of loop-mediated isothermal amplification (LAMP, Notomi et al. 2000) products (Sasai et al. 2017, Takabatake et al. 2018, Moonga et al. 2020, Takarada et al. 2020). The LAMP system could be developed for *MS1* (Hasegawa et al. 2020). To our knowledge, this is the first

Fig. 2. An example of STH-PAS diagnosis for the presence of *Ms1* and *ms1-1* alleles under low humidity condition (A) and developer bath (B) and the result of agarose gel electrophoresis (C). Lane 1: 'Ōi 7' (*Ms1/ms1-2*), 2: 'Suzu 2' (*Ms1/ms1-1*), 3: SSD-18 (*ms1-1/ms1-1*), 4: SSD-100 (*ms1-1/ms1-1*), 5: FO7-141 (*ms1-1/ms1-2*), 6: FO7-144 (*ms1-1/ms1-2*), M: 100 bp ladder marker.

report on the use of STH-PAS in conifers. Consequently, the results of this study can be considered as the first step towards the ultimate goal of building a system that can identify pollen-free sugi trees anywhere in the field using only simple equipment.

Acknowledgments

This research was supported by the research program on development of innovative technology grants (28013BC) from the Bio-oriented Technology Research Advancement Institution (BRAIN).

References

- Hasegawa, Y., Ueno, S., Matsumoto, A., Ujino-Ihara, T., Uchiyama, K., et al. (2018) Fine mapping of the malesterile genes (*MS1*, *MS2*, *MS3*, and *MS4*) and development of SNP markers for marker-assisted selection in Japanese cedar (*Cryptomeria japonica* D. Don). PLoS ONE, 13, e0206695.
- Hasegawa, Y., Ueno, S., Wei, F. J., Matsumoto, A., Uchiyama, K., et al. (2021) Identification and genetic diversity analysis of a male-sterile gene (*MS1*) in Japanese cedar (*Cryptomeria japonica* D. Don). Sci. Rep., 11, 1496.
- Hasegawa, Y., Ueno, S., Wei, F. J., Matsumoto, A., Ujino-Ihara, T., et al. (2020) Development of diagnostic PCR and LAMP markers for *MALE STERILITY 1 (MSI)* in *Cryptomeria japonica* D. Don. BMC Res. Notes, 13, 457.
- Hayashi, M., Natori, T., Kubota-Hayashi, S., Miyata, M., Ohkusu, K., et al. (2013) A new protocol to detect multiple foodborne pathogens with PCR dipstick DNA chromatography after a six-hour enrichment culture in a broad-range food pathogen enrichment broth. BioMed Res. Int., 2013, 295050.
- Maruyama, T. E., Tsuruta, M., Ueno, S., Kawakami, K., Bamba, Y. and Moriguchi, Y. (2022) An improved and simplified propagation system for pollen-free sugi (*Cryptomeria japonica*) via somatic embryogenesis. Front. Plant Sci., 13, 825340.
- Maruyama, T. E., Ueno, S., Hirayama, S., Kaneeda, T. and Moriguchi, Y. (2020) Somatic embryogenesis and plant regeneration from sugi (Japanese cedar, *Cryptomeria japonica* D. Don, Cupressaceae) seed families by marker assisted selection for the male sterility allele *ms1*. Plants, 9, 1029.
- Matsubara, A., Sakashita, M., Gotoh, M., Kawashima, K., Matsuoka, T., et al. (2020). Epidemiological survey of allergic rhinitis in Japan 2019. Nippon Jibiinkoka Gakkai Kaiho, 123, 485–490.
- Mishima, K., Hirao, T., Tsubomura, M., Tamura, M., Kurita, M., et al. (2018) Identification of novel putative causative

genes and genetic marker for male sterility in Japanese cedar (*Cryptomeria japonica* D. Don). BMC Genom., 19, 277.

- Monden, Y., Takasaki, K., Futo, S., Niwa, K., Kawase, M., et al. (2014) A rapid and enhanced DNA detection method for crop cultivar discrimination. J. Biotechnol., 185, 57– 62.
- Moonga, L. C., Hayashida, K., Kawai, N., Nakao, R., Sugimoto, C., et al. (2020) Development of a multiplex loop-mediated isothermal amplification (LAMP) method for simultaneous detection of spotted fever group rickettsiae and malaria parasites by dipstick DNA chromatography. Diagnostics, 10, 897.
- Moriguchi, Y., Ueno, S., Hasegawa, Y., Tadama, T., Watanabe, M., et al. (2020) Marker-assisted selection of trees with *MALE STERILITY 1* in *Cryptomeria japonica* D. Don. Forests, 11, 734.
- Notomi, T., Okayama, H., Masubuchi, H., Yonekawa, T., Watanabe, K., et al. (2000) Loop-mediated isothermal amplification of DNA. Nucleic Acids Res., 28, e63.
- Saito, M. (2010) Breeding strategy for the pollinosis preventive cultivars of *Cryptomeria japonica* D. Don. J. Jpn. For. Soc., 92, 316–323.
- Sasai, R., Monden, Y., Tahara, M. and Takasaki, K. (2017) Assessment of simplified cultivar identification method in azuki processed products using single tag hybridization (STH) chromatographic printed array strip (PAS). DNA polymorphism, 25, 88–91.

Takabatake, R., Kagiya, Y., Minegishi, Y., Futo, S., Soga, K.,

et al. (2018) Rapid screening detection of genetically modified crops by loop-mediated isothermal amplification with a lateral flow dipstick. J. Agric. Food Chem., 66, 7839–7845.

- Takarada, Y., Kodera, T., Kobayashi, K., Nakajima, C., Kawase, M. and Suzuki, Y. (2020) Rapid detection of rifampicin-resistant *Mycobacterium tuberculosis*, based on isothermal DNA amplification and DNA chromatography. J. Microbiol. Methods, 177, 106062.
- Tian, L., Sato, T., Niwa, K., Kawase, M., Tanner, A. C. and Takahashi, N. (2014) Rapid and sensitive PCR-dipstick DNA chromatography for multiplex analysis of the oral microbiota. BioMed Res. Int., 2014, 180323.
- Tsuruta, M., Maruyama, T. E., Ueno, S., Hasegawa, Y. and Moriguchi, Y. (2021) Marker-assisted selection for pollenfree somatic plants of sugi (Japanese cedar, *Cryptomeria japonica*): A simple and effective methodology for selecting male-sterile mutants with *ms1-1* and *ms1-2*. Front. Plant Sci., 12, 748110.
- Watanabe, M., Ueno, S., Hasegawa, Y. and Moriguchi, Y. (2022) Efficient low-cost marker-assisted selection of trees with *MALE STERILITY 1 (MS1)* in Japanese cedar (*Cryptomeria japonica* D. Don) using bulk DNA samples. Tree Genet. Genomes, 18, 29.
- Wei, F. J., Ueno, S., Ujino-Ihara, T., Saito, M., Tsumura, Y., et al. (2021) Construction of a reference transcriptome for the analysis of male sterility in sugi (*Cryptomeria japonica* D. Don) focusing on *MALE STERILITY 1* (*MS1*). PLoS ONE, 16, e0247180.

無花粉スギ系統の迅速な判別に向けた 簡易な PCR 産物可視化システム STH-PAS の適用

鶴田 燃海^{1)*}、上野 真義¹⁾、丸山 毅¹⁾、袴田 哲司²⁾、森口 喜成³⁾

要旨

スギの雄性不稔の原因遺伝子 MALE STERILITY 1 (MSI) の簡易判定法を確立するため、PCR 産物を目視 で確認できる single-tag hybridization chromatographic printed array strip (STH-PAS) を用いて PCR 後の操作 の省力化を試みた。タグまたはビオチンを付加したプライマーを用いて PCR を行い、増幅産物を相補タ グが固相化された棒状のメンブレンに展開した。およそ 15 分で検出ラインが呈色し、MSI 遺伝子型が判 定できた。判定は電気泳動結果と一致し、STH-PAS が判定に必要な時間と労力を大幅に削減可能なこと が示された。

キーワード:スギ、核酸クロマトグラフィー、雄性不稔、簡易遺伝子型判定法、STH-PAS

原稿受付:令和4年3月22日 原稿受理:令和4年7月7日

¹⁾森林総合研究所樹木分子遺伝研究領域

²⁾ 静岡県農林技術研究所森林・林業研究センター

³⁾ 新潟大学大学院 自然科学研究科

^{*} 森林総合研究所 樹木分子遺伝研究領域 〒 305-8687 茨城県つくば市松の里 1、E-mail: mtsuruta@ffpri.affrc.go.jp

シカ防護柵に使われる各部材の強度試験 ---支柱の折り曲げ・アンカー杭の引き抜き・裾ロープの引き上げ----

大谷達也^{1)*}、米田令仁¹⁾

要旨

シカ除け防護柵の部材である支柱・アンカー杭・裾ロープについて、それぞれ折り曲げ・引き抜き・引 き上げの強度試験を実施した。動物除け防護柵の支柱として市販されているものの、支柱折り曲げ強度に は製品ごとに平均 66 N から 396 N と幅があった。全長の長いアンカー杭が垂直・斜め・水平のいずれの 方向でも引き抜き強度が大きく、粘土質造成土では礫混じり砂質土よりも大きな値を示した。アンカー杭 を斜めに引き抜く場合のほうが垂直の場合よりも大きな引き抜き強度を示したため、裾ロープおさえのア ンカー杭に斜め方向の力がかかるように裾ロープとアンカー杭頂部を連結することを防護柵の改善案とし て挙げた。

キーワード:ロードセル、ニホンジカ、土壌貫入計、土質、イノシシ

1. はじめに

現在、ニホンジカ (Cervus nippon、以下シカ) は農業・ 林業ともにもっとも深刻な加害獣となっており (農林水 産省 2021,林野庁 2021)、農山村の振興にとって大きな障 壁となっている。国内の林業においてはスギ・ヒノキ人 工林の成熟にともない木材生産が盛んになっているもの の、伐採後の再造林にあたって苗木のシカによる食害が 甚大となる場合がある。再造林地におけるシカによる苗 木食害を防ぐために、忌避剤、単木保護資材、および防 護柵といったさまざまな対策がとられ、なかでも防護柵 は国有林・民有林ともに一般的にひろく適用されている。

数メートル間隔で立てた支柱に樹脂・金属製ネットを 取り付けて再造林地の外周を囲む防護柵は、設計通りの 機能を発揮すれば再造林地からシカを排除し続けること ができ苗木防護の性能は高いと期待される。しかし実際 には、設置後の破損によってシカ・カモシカが侵入し苗 木に深刻な被害を受けた林分が多数あることが報告され ている (高柳・吉村 1988, 酒井 2018)。防護柵が破損する 原因として倒木や落石といった動物以外の要因による場 合もあれば、動物が防護柵に干渉してネットを破る、防 護柵下端がこじ開けられてアンカー杭が抜けるといった 場合もある。これまでに動物の侵入過程を報告した例で は、防護柵下端が浮き上がってシカの侵入を許すことが 多く (尾崎 2001)、イノシシが防護柵を破壊したあとにシ カが侵入するといったことがいわれている(日下・法眼 2018)。防護柵は地表面の不安定な山地に設置され動物の 干渉を受けながら長期に使用されるので費用が許す限り

頑丈にしたいところであるが、設置の際には最終的に各 部材を人力で運ぶため重量の制限があり際限なく強度を 上げることはできないのが現状である。

そのような状況においても、より丈夫で防御力の高い 防護柵を目指して、入手可能な資材を使った工夫や新た な仕様が検討・提案されている (三重県林業研究所 2016, 佐渡・田戸 2017, 四国森林管理局 2019, 森林整備センター 2020, 小長井・宮田 2021)。現状では農林業用の防護柵と してさまざまな業者から製品が市販されており、それぞ れに仕様や強度が異なると予想される。また地面に打ち 込まれるアンカー杭では、土質のちがいによって引き抜 ける荷重が異なることも想定される。現状で使用されて いる防護柵がどのような原因で機能を失うにせよ、その 性能を改善していくためには、外力に対して防護柵の各 部材が十分な強度をもっているのか、なんらかの改善に よって破損頻度を低減できる余地があるのかを確かめて おく必要がある。複数の製品の強度や土質によるちがい を整理しておくことは、林業事業者が現場の状況に合わ せた細かな工夫をするためにも参考になるだろう。

そこで本稿では、防護柵の支柱やアンカー杭といった 各部材について力学的な特徴を整理した。すなわち、1. 異なる仕様の支柱の折り曲げ強度、2. 異なる仕様のアン カー杭・土質・引っ張り角度のアンカー杭引き抜き強度、 および 3. 防護柵下端を模した、複数のアンカー杭でロー プをおさえた場合のロープ引き上げ荷重について複数の 場所で試験をおこなったので報告する。

原稿受付:令和4年4月8日 原稿受理:令和4年5月17日 1)森林総合研究所四国支所

^{*} 森林総合研究所 四国支所 〒 780-8077 高知県高知市朝倉西町 2-915

2. 材料と方法

2.1 支柱の折り曲げ試験

支柱の折り曲げ試験にあたっては7種類の製品を用意 した (Table 1)。これらの製品は製造メーカが想定した使 用法や農地・林地向けにかかわらず、ウェブサイトなど で「防獣柵支柱」、「防護柵支柱」として販売されている ものを使用した。森林総合研究所四国支所構内において (高知県高知市、砂利混じり粘土質造成土)、各製品 10本 ずつを垂直に突き立て頂部にかけたワイヤーをウインチ

Table 1. 折り曲げ試験に供した支柱の特徴

(Warn Industries Inc., Drill Winch 340kg)で引きながらロー ドセル (イマダ、ZTA-SW1-5000N)で引っ張り荷重を測 定した (Fig. 1a)。各製品は全長が異なるものの、地上の 高さが 1.8 m になるように地面に打ち込んだ。各支柱の 頂部にワイヤーをかけ下方へ 20 度前後の角度で引けるよ うに、支点となる立木までの距離が 5 から 6 m となる位 置に支柱を設置した。支点の立木根元とウインチの間に ロードセルを挟み、引っ張り荷重を連続的に 1/100 秒ご とに測定した。ウインチをゆっくり作動させていくと支

タイプ	材質および構造	直径 (mm)ª	全長 (mm)ª	肉厚 (mm) ^b	重量 (g)°
А	FRP 管、黒色樹脂被覆、先端加工。	35	2,700	2.6 (FRP 管のみ) 3.5 (被覆含む)	1,237
В	鋼管、黒色樹脂被覆、先端加工 (果樹などの枝つり支柱)°	25	2,100	0.4 (鋼管のみ) 0.9 (被覆含む)	575
С	鋼管、茶色樹脂被覆、先端加工	31.8	2,100	0.5 (鋼管のみ) 0.9 (被覆含む)	899
D	鋼管、黒色樹脂被覆、先端加工	33	2,100	0.7 (鋼管のみ) 1.4 (被覆含む)	1,136
Е	鋼管、被覆なし、両端開放、杭分離式、断面 正方形鋼管(杭)	38(支柱) 25角(杭)	1,800(支柱) 990(杭)	0.5 (支柱) 1.6 (杭)	1,107(支柱) 838(杭)
F	鋼管、茶色樹脂被覆、先端加工なし、杭分離 式、樹脂被覆鋼管(杭) (ニホンザル向けの電気柵用支柱) ^e	34(支柱) 26(杭)	2,200(支柱) 900(杭)	0.6 (鋼管のみ) 2.0 (被覆含む)	1,441 (支柱) 542 (杭)
G	片側長辺が解放された長方形断面の鋼材、被 覆なし、先端加工なし	40×25 (長辺×短辺)	2,500	1.45	3,358

a) 製造メーカのカタログ公表値、b) マイクロメータによる実測値、c) 実測値の平均 (n = 4)、d) 地面に打ち込みやすいように先端が尖った部品が付いている、e) 製造メーカでの製品仕様が防護柵支柱ではない場合に本来の用途を記した。

Fig. 1. 支柱折り曲げ試験およびアンカー杭引き抜き試験の実施状況

a) 支柱の頂部 (高さ 1.8 m) にワイヤーをかけて折り曲げる、b) アンカー杭を水平方向に引き抜く、 c) 斜め 45 度に引き抜く、および d) 垂直に引き抜く場合の荷重を測定した。 柱がしなり最終的に支柱が折れ曲がり破損あるいは不可 逆的に変形するため、破損または不可逆的な変形までの 最大荷重を折り曲げ強度とした。また初期位置から破損 時までのワイヤーが引かれた長さをメジャーで測定した。 杭と支柱が分離式のEとFタイプについては、まず杭だ けを地中に打ち込み、次に地中から突き出た杭に支柱を 被せる構造になっている。これらについては、それぞれ 専用品として販売されている杭を地上に 50 cm が突き出 るように打ち込んだ。杭と支柱が分離式となっており支 柱の全長が 2.2 m あるタイプ F では、支柱頂部ではなく 地面から 1.8 m となる位置にワイヤーをかけた。さらに F タイプでは支柱ではなく杭が先に変形したため、最初の 5本は杭の変形までの荷重を測定し、残りの5本は支柱 のみをコンクリート側溝に固定して 1.8 m の長さで荷重 をかけて破損までの最大荷重を記録した (F'タイプ)。G タイプの断面形状は片方の長辺が解放された長方形であ るため、引っ張り方向に短辺を向けたものと長辺を向け たものを半数ずつ設置した。2021年6、7月および10月 に上記の試験をおこなった。

2.2 アンカー杭の引き抜き試験

アンカー杭の引き抜き試験にあたっては4種類の製品 を用意した (Table 2)。いずれも農林業での使用を想定し て販売されているもので、再造林地向けの防護柵に付属 して販売されているものを含んでいる。地質や土質の異 なる3か所において (Table 3)、各アンカー杭を水平、斜 め45度、および垂直に引き抜く際の引っ張り荷重を前述 と同様にロードセルで測定した (Fig. 1b, c & d)。アンカー 杭の頂部が地面と同じ高さになるまで垂直に打ち込み、 頂部にワイヤーをかけてウインチで引き、支点との間に 設置したロードセルで引っ張り荷重を経時的に測定した。 アンカー杭が地面から引き抜ける、または折れるまでの

Table 2. 引き抜き試験に供したアンカ	ー杭の特徴
------------------------	-------

最大荷重を引き抜き強度とした。水平および斜め 45 度に 引き抜く場合は立木根元を支点とし、斜め 45 度の場合に はアンカー杭と立木の中間に設置した三脚の滑車を介し た (Fig. 1b & c)。垂直に引き抜く場合はアンカー杭の真上 に三脚を設置して、ロードセルとウインチを吊して支点 とした (Fig. 1d)。それぞれの場所ごとにアンカー杭の種 類・引き抜き方向の組み合わせのそれぞれについて5回 ずつ繰り返した。土壌の堅さを評価するため、それぞれ の場所ごとに土壌貫入計による測定をおこなった。各場 所3回ずつ長谷川式土壌貫入計(ダイトーテクノグリー ン、H-60N、落錘2kg、ロッド長 60 cm)の貫入棒が 40 cm 刺さるまで試行し、ウエイト落下数の合計とともに 落下ごとの貫入量 (cm drop⁻¹, S 値)の平均値を算出した。 2021年11月および 2022年1月にいずれの場所でも数日 間の晴天が続いたのち、上記の試験をおこなった。

データ解析には R 4.0.5 を使用した (R Core Team 2021)。 アンカー杭の引き抜き強度に及ぼす影響を検討するため、 引き抜き強度を応答変数、引き抜き方向、アンカー杭の 種類、および場所を説明変数とした一般線形モデルを構 築した (lm 関数)。その際、引き抜き強度の分布がわずか に偏っていると認められたため、Box-Cox 変換によって 正規性を確保した (car 3.0-13、powerTransform 関数、 λ = 0.3324)。各説明変数の効果を分散分析によって評価し (anova 関数)、アンカー杭の種類については多重比較をお こなった (multcomp 1.4-19、glht 関数、Tukey 法、 α = 0.05 レベル)。

2.3 複数アンカー杭でおさえたロープの引き上げ試験

再造林地に防護柵が設置される場合、3から4m間隔 の支柱間に張った防護柵ネット下端(裾)のロープを複数 のアンカー杭でおさえることが一般的であるが、補助金 対象となる防護柵の仕様として支柱間の距離やアンカー

タイプ	材質および構造	断面形状	直径・幅 (mm)ª	全長 (mm)°	重量 (g) ^d
Ι	プラスティック製、黒色、テーパー 形状、高さ 10 mm の突起 4 か所	H型	$22 \times 21^{\text{b}}$	400	114
П	鉄芯プラスティック被覆、黒色、高 さ 3 mm の段 2 か所	丸型	φ 12	300	90
Ш	プラスティック製、灰色、高さ5mm の突起4か所	H型	16×15	430	68
IV	プラスティック製、黒色、高さ5mm の突起4か所	H型	16×14	360	51

a) 突起部などを含まない軸の部分で計測、b) 最も太い杭上部の値、c) メーカ公表のカタログ値、d) 実測値の平均 (n = 4)。

Table 3. アンカー杭の引き抜き試験を実施した場所の特徴

場所	地質	土質	土壤貫入計 ^a
四国支所構内(高知市)	非海成層	砂利混じり粘性土 (造成土)	52 \Box , 0.74 ± 0.43 cm
高知県香美市の皆伐地	海成層泥岩	礫混じり砂質土	$63 \square$, $0.63 \pm 0.62 \text{ cm}$
愛媛県今治市の皆伐地	花崗閃緑岩	礫混じり砂質土 (まさ土)	57 \square , 0.68 ± 0.72 cm

a) 長谷川式土壌貫入計の先端が深さ 40 cm に到達するまでの打撃数の平均値、および 1 打撃あたり貫入量 (S 値) の平均 値と標準偏差を示す (各場所 3 回計測)。 杭の本数が定められている場合がある。そのため、裾お さえのアンカー杭本数を増やした場合に、裾おさえの効 果がどれほど変化するかを評価した (Fig. 2)。前述のアン カー杭引き抜き試験をおこなった場所のうち、森林総合 研究所四国支所構内および愛媛県今治市郊外皆伐地の2 か所において、3m間隔でアンカー杭を設置して径6 mm のポリエチレン三つ撚りロープを結びつけた。そのロー プをおさえるために、2本、あるいは4本のアンカー杭 を等間隔に打設し (1 m 間隔および 60 cm 間隔)、両端ア ンカー杭の中央位置でロープを垂直に引き上げて地面と ロープの隙間および引き上げ荷重を測定した。飼育下の 実験によれば、ホンシュウジカがくぐり抜けられる地際 の隙間は 20 から 30 cm の範囲であるとされている (堂山 ら 2016)。そのため、ロープが地面にぴったりついた状態 から徐々に引き上げて、地面との隙間が10 cm、20 cm、 30 cm、および 35 から 40 cm となる時点までの最大荷重 を記録した。また、各時点においてロープ引き上げ作用 点の両隣に打ち込んだ杭が、1.まったく動かない、2.垂 直方向に浮き上がり始めた、および 3. 完全に引き抜け た、のいずれの挙動を示したかを記録した。すべての試 行において、最終的に 35 cm ほどロープを引き上げると 作用点の両隣のうち少なくとも片側の杭が完全に引き抜 けたので、試験の終了はロープを 35 から 40 cm 引き上 げていずれかの杭が完全に抜けたときとした。前述と同 様、三脚からつり下げたウインチおよびロードセルを用 いた (Fig. 2)。1 m 間隔および 60 cm 間隔のアンカー杭打 設のそれぞれについて、各場所で5回ずつ試行した。こ の試験にあたっては、前述のアンカー杭引き抜き試験で

もっとも折れにくく、林業現場で使用されていることの 多いタイプ I のアンカー杭を使用した。いずれの場所で も 2021 年 12 月に数日間の晴天が続いたのち、上記の試 験をおこなった。

3. 結果と考察

3.1 支柱の折り曲げ試験

7種類の支柱を使って破損までの引っ張り荷重の最大 値、すなわち折り曲げ強度を比較したところ、FRP 管製 のAタイプがもっとも大きな値 (396 ± 45 N、平均値 ± SD) を、D、E、およびGタイプがそれに次ぐ250から 300 N 程度の値を (順に 257 ± 58 N、272 ± 10 N、293 ± 30 N)、B および F タイプが 80 N 以下のもっとも小さな値を 示した (66 ± 15 N および 71 ± 10 N、Fig. 3a)。全長や直径 がほぼ同等のCおよびDタイプでは、鋼管がより肉厚な Dタイプのほうが大きな折り曲げ強度を示した(順に 138 ± 39 N、257 ± 58 N、Table 1、Fig. 3a)。F タイプでは杭と ともに支柱を折り曲げた場合よりも、支柱だけを側溝に 固定した場合 (F) のほうが大きな値を示した (順に 71 ± 12 N、114 ± 12 N)。不可逆的な変形、すなわち破損まで に支柱頂部(荷重の作用点)がどれほど移動したかの変位 量をみると、A タイプが最大の 1.5 ± 0.2 m となった (Fig. 3b)。つまり A タイプは破損するまでに支柱頂部が 1.5 m 移動するほどしなることができるということである。対 照的に E、F、および G タイプでは 0.6 m 未満の変位量で 破損がおこった。感覚的な記載をすると、Aタイプでは 成人男性が両手で頂部をもって体重をかけると折れる程 度、BやFタイプでは片手で頂部を引くと折れる程度で

Fig. 2. 複数アンカー杭でおさえたロープの引き上げ試験の実施状況 3 m の間隔をあけて両端を固定したロープを、a)4 本のアンカー杭でおさえた場 合 (60 cm 間隔)、および b)2 本でおさえた場合 (1 m 間隔) について、ロープ中 央部を垂直に持ち上げる荷重を測定した。

ある。Aから D、および F タイプ (F'も含む) については、 地際を支点として支柱および専用杭が折れ曲がったが、E タイプでは支柱内部の杭の上端、すなわち支柱頂端から 130 cm の位置で折れ曲がった。ほとんどの製品では破損 がおこった後には極端に小さな荷重で変形させることが できるものの、G タイプでは不可逆的に変形した後にも さらに曲げ続けるには最大荷重の 8 から 9 割程度の荷重 をかける必要があった (Fig. 4)。G タイプでは短辺方向に 引いた場合は地際で折れ曲がったが、長辺方向に引いた 場合は地際から 50 cm から 1 m ほどの部分が 90 度捻れな がら曲がった。

B および F タイプを動物用の防護柵支柱として販売す るウェブサイトがあるものの、製造メーカでは別の目的 で作られているため (Table 1)、ほかの製品に比べて折り 曲げ強度が弱いようだ。G タイプは農地用の金属メッシュ 柵支柱として販売されており再造林地で使うにはかなり の重量があるが、他の製品とは異なり無理な荷重によっ て不可逆的に変形したとしてもその後にも機能し、ある 程度はもとの形状に戻すことも可能と考えられる。E タ イプでは折り曲げ強度のばらつきが非常に小さく、10本 すべてが支柱内部の杭頂部の位置で折れ曲がった。専用

Fig. 3. 支柱折り曲げ試験の結果

a) 支柱の折り曲げ強度 (破損までの最大引っ張り荷 重)、b) 破損時までの引っ張り変位量。支柱のタイ プごとに 10 本ずつ、ただしFおよびF については 5 本ずつを供試した (詳細は本文を参照のこと)。● は平均値、ヒゲは標準偏差を示す。 品として販売されている杭の端(両端が同じ形状)は鋭利 な角になっており、ここに応力が集中して破損するため に折り曲げ強度のばらつきがほかの製品よりも小さいも のと考えられる。杭分離式のEタイプは急傾斜など足場 の悪いところでは設置作業がしやすいと考えられるもの の、Aタイプに比べると折り曲げ強度や破損までの変位 量が小さいため、控え索を多めに設置するなど工夫が必 要であろう。それぞれの製品特性を生かして適切に防護 柵を設置するとともに、長期にわたり設計通りの性能を 発揮させることが求められる。

3.2 アンカー杭の引き抜き試験

アンカー杭の引き抜き試験を実施した3か所について、 土壌貫入計による測定結果をFig.5に示した。貫入棒が 深さ40 cm に達するまでの重り落下数、およびS値の平 均値では3か所に大きなちがいはないものの(Table 3)、 森林総合研究所四国支所構内の粘土質造成土では深さ10 から40 cm まで比較的に一定してS値1 cm 前後の値を示 すのに対して(Fig.5a)、今治市郊外の花崗岩地帯、およ び香美市郊外の泥岩地帯の尾根筋では深さ15 cm まで柔 らかい土壌であるものの15から20 cm よりも深い部分で はS値0.5 cm ほどの固い土壌となった(Fig.5b&c)。た だし高知県香美市郊外の皆伐地では30 cm の深さになっ てもS値2 cm ほどの柔らかい土壌がみられる箇所もあっ た。四国支所構内の造成土では浅い部分から土壌が締まっ ているのに対し、二つの皆伐地の尾根筋では15 cm 程度 の浅い土層の下に固く締まった土層や風化の進んだ母岩

Fig. 4. 支柱折り曲げ試験での引っ張り荷重実測値の一例 a) 支柱 A タイプ、および b) G タイプについて、ロー ドセルで測定した 1/100 秒ごとの引っ張り荷重の経 時変化の一例を示す。A タイプでは引っ張り荷重が 最高値に達して支柱が破損したあとには引っ張り荷 重はゼロになるが、G タイプでは最高値を示して支 柱が不可逆的に変形しはじめたのちにも、さらに曲 げ続けるには荷重をかける必要があった。

があると推察される。S値0.7 cmを下回ると樹木根系の 伸長が困難なほど固く締まった土壌とされるので(日本 造園学会2000)、二つの皆伐地の地表下20 cmより深い場 所は造林木の成長に影響するほど固いといえる。

引き抜き方向、アンカー杭の種類、および場所ごとに 引き抜き強度を Fig. 6 に示した。引き抜き強度を応答変 数、アンカー杭の種類・引き抜き方向・場所を説明変数 とした一般線形モデルによる解析では、いずれの説明変 数も引き抜き強度に有意に影響し (杭の種類 F = 17.8、引 き抜き方向 F = 10.9、場所 F = 91.0、いずれも p < 0.001)、 Table 4 の係数推定値を得た。まず、直感的に予想される 結果と一致するが、斜め45度に引き抜く場合に比べて (703 ± 301 N、平均値 ± sd)、垂直に引き抜く場合は引き 抜き強度が有意に小さく (496 ± 235 N)、水平の場合には 有意に大きかった (1,127 ± 387 N)。アンカー杭を水平に 引き抜いた場合には杭の湾曲が頻繁にみられ、合計7本 で杭の破損が起こった。タイプⅠおよびⅡではそれぞれ 1本の破損が四国支所構内であり、杭頂部の一部の欠損 や先端部のみの破損であったのに対し、タイプⅢあるい はⅣでは杭本体の中間部での折損がいずれの場所でもみ られた (順に2および3本)。杭が破損した場合だけの引 き抜き強度を平均すると 1,423 ± 337 N (n = 7) となり、こ の程度の荷重が杭の軸方向と直角にかかると杭が破損し うるといえる。次に、アンカー杭の種類別に引き抜き強 度を多重比較した結果、平均値の大きなタイプ I (893 ± 412 N) とタイプⅢ (924 ± 445 N) に対して、平均値の小さ なタイプⅡ (617 ± 352 N) とタイプⅣ (649 ± 325 N) のよう

a) 森林総合研究所四国支所構内(高知市、砂利混じ り粘土質造成土)、b) 愛媛県今治市郊外皆伐地(花 崗岩地帯)、および c) 高知県香美市郊外皆伐地(海 成層泥岩質)。それぞれの場所で3回の測定をおこ ない、異なる線種で表示した。灰色縦実線はS値0.7 cmを示す。

森林総合研究所研究報告 第 21 巻 3 号, 2022

に二分された。最後に、場所による差については香美市 郊外の皆伐地 (734 ± 361 N) に比べ、森林総合研究所四国 支所構内 (889 ± 443 N) では引き抜き強度が有意に大きく、 今治市郊外の皆伐地 (696 ± 397 N) では有意に異なるとは

Fig. 6. アンカー杭引き抜き試験の結果

a) 垂直方向、b) 斜め45度、および c) 水平方向の引 き抜き試験の結果を示す。●森林総合研究所四国 支所構内(砂利混じり粘土質造成土)、○今治市郊 外皆伐地(花崗岩地帯)、および▲香美市郊外皆伐 地(海成層泥岩質)。それぞれの場所・アンカー杭 について引き抜き強度の平均値および標準偏差を示 す。それぞれのグラフで縦軸のスケールが異なるこ とに注意(比較のしやすさのため灰色横破線は同じ 値 533 N を示す。ここで 533 N とはイノシシが鼻先 で持ち上げる力(西日本農業研究センター 2016)に 相当する)。

Table 4. アンカー杭引き抜き試験の一般線型モデルによる 係数の推定結果

変数	推定值 ± 標準誤差	<i>t</i> 値	<i>p</i> 值
切片	24.2 ± 0.67	36.4	< 0.001
アンカー杭の種類			
タイプ Ⅱ	-3.63 ± 0.66	-5.5	< 0.001
タイプⅢ	0.34 ± 0.66	0.5	0.6
タイプIV	-3.02 ± 0.66	-4.5	< 0.001
場所			
四国支所構内	1.88 ± 0.58	3.3	< 0.01
今治市郊外	-0.59 ± 0.57	-1	0.3
引き抜き方向			
垂直	-3.05 ± 0.57	-5.3	< 0.001
水平	4.64 ± 0.58	8	< 0.001

調整済み r² = 0.58、F_{7,174} = 36.7、p < 0.001。アンカー杭の 種類についてはタイプ I を、場所については香美市郊外 を、引き抜き方向については斜め 45 度を基準とした結果 を示す。 いえなかった。

引き抜き強度が大きいタイプⅠおよびⅢでは全長が 400 mm 以上あるのに対し、引き抜き強度が小さいタイ プⅡおよびIVでは全長が 400 mm 未満であった (Table 2)。 ステンレスパイプを杭に見立てた模型実験では、垂直に 引き抜く場合には引き抜き強度は杭長に比例し、斜めに 引き抜く場合には杭長の二乗に比例することが示されて いる (木全ら 2006)。本試験ではタイプⅢとⅣでは断面形 状がほぼ同じでタイプⅢの全長がⅣのほぼ 1.2 倍であり (Table 2)、垂直引き抜きの場合にはタイプⅢの引き抜き強 度(平均値 637 N) がタイプIV (372 N) のおよそ 1.7 倍、斜 め引き抜きの場合にはタイプⅢ (877 N) がタイプⅣ (598 N)のおよそ1.5倍となった。この結果は前述の模型実験 とは必ずしも一致しないものの、杭長を長くすることの 意義は認められる。側面の突起の効果については定量的 に評価することはできないが、高さ 10 mm の突起がつい たタイプ I が 5 mm 突起付きのタイプⅢよりも大きな引 き抜き強度を示すわけではなかった (Table 2 & 4)。

アンカー杭の引き抜き強度は、礫混じり砂質土である 香美市皆伐地よりも砂利混じり粘性土である森林総合研 究所四国支所構内で高かった (Table 3 & 4)。杭を垂直に 引き抜く場合の強度を決める最大周面摩擦力(杭の側面 と土との摩擦力)は建築物の土台に使われるような大型 の杭の場合には土のせん断強度で評価できることが示さ れており(伊藤・前原 1986)、圧力があまりかかっていな

Fig. 7. 複数アンカー杭でおさえたロープの引き上げ試験の 結果

a) 森林総合研究所四国支所構内(砂利混じり粘土質 造成土)、およびb) 今治市郊外皆伐地(花崗岩地帯)。 ○両端を固定した3mのロープを2本(1m間隔) のアンカー杭でおさえた場合、および●4本(60 cm 間隔)でおさえた場合。それぞれの場所・隙間につ いて引き上げ荷重の平均値および標準偏差を示す。 それぞれのグラフで縦軸のスケールが異なることに 注意(灰色横破線については Fig. 6 の注釈を参照)。 い地表面に近い土層の場合にはせん断強度の多くを土の 内部摩擦角ではなく粘着力が担っていると考えられる。 本試験で観察された土質による引き抜き強度のちがいは、 乾いた砂は粘着力を発揮しないため礫混じり砂質土では 引き抜き強度が下がり、一方で砂利混じり粘性土では粘 土の粘着力によって引き抜き強度が上がったことが原因 のひとつと考えられる。防護柵の設置地点において、ア ンカー杭の引き抜き強度を考慮しながら適切な製品を選 択するには、土壌貫入計で測定できる堅さだけではなく 土質についての観察が必要になるかも知れない。

3.3 複数アンカー杭でおさえたロープの引き上げ試験

森林総合研究所四国支所構内および今治市郊外皆伐地 の2か所での、ロープ引き上げ荷重をFig.7に示した。 どちらの場所でも地面との隙間を大きくするほど引き上 げ荷重は大きくなりロープを30 cm引き上げるまでの最 大引き上げ荷重の平均値は森林総合研究所四国支所構内 では1,337±558 N、今治市郊外皆伐地では577±168 Nを 示した。ただし、すべての場合においてその時点で作用 点の両隣のアンカー杭は少なくとも片方が動き始める、 あるいは抜けており (Fig. 8)、それ以上に引き上げても30 cm時点までの最大荷重を越えることはなかった。四国支 所構内に比べて全体にアンカー杭の引き抜き強度が小さ い今治市郊外の皆伐地では (Fig. 6, Table 4)、10 cm引き上 げ、および20 cm引き上げ時点において、1 m間隔と60

Fig. 8. 複数アンカー杭でおさえたロープの引き上げ試験で の杭の挙動

ロープ引き上げ作用点の両隣に打ち込んだ2本のア ンカー杭の挙動を、それぞれの場所・打ち込み間 隔・地表面との隙間について10本ずつ示した。a) 森林総合研究所四国支所構内(砂利混じり粘土質造 成土)、およびb)今治市郊外皆伐地(花崗岩地帯)。 ○両端を固定した3mのロープを2本(1m間隔) のアンカー杭でおさえた場合、および●4本(60 cm 間隔)でおさえた場合。各点が重ならないように少 しずつずらして表示した。 cm 間隔でアンカー杭を打った場合の引き上げ荷重の差が 大きく、20 cm 引き上げでは1 m 間隔が 368 ± 79 N に対 し 60 cm 間隔が 593 ± 142 N であった (Fig. 7b)。これに比 べて、森林総合研究所四国支所構内では 20 cm 引き上げ 時点での引き上げ荷重はアンカー杭打設本数によって大 きく異ならなかった (Fig. 7a)。ただし、20 cm 引き上げ時 点での引き上げ荷重は今治市の皆伐地よりもかなり大き く1m間隔では777 ± 369 N、60 cm間隔では1,127 ± 535 Nであった。森林総合研究所四国支所構内のほうが大き な引き上げ荷重を示したことと同様、引き上げ作用点の 両隣に打ち込んだアンカー杭が浮き上がり抜けていく挙 動についても 20 cm 引き上げ時点でみると、四国支所構 内のほうがやや抜けにくかった (Fig. 8)。10 cm 引き上げ 時点ではほぼすべての杭は動かず、20 cm、30 cm と引き 上げていくに従い、いずれの場所でも1m間隔よりも60 cm 間隔のほうが早くに杭が抜けることが Fig. 8 から見て とれる。

タイプ I のアンカー杭の垂直引き抜き強度は森林総合 研究所四国支所構内では 691 ± 94 N、今治市郊外皆伐地 では 497 ± 256 N であるので (Fig. 6a)、上記の結果をふ まえるとアンカー杭の引き抜き強度が小さい場所ではア ンカー杭の数を増やすことによって裾ロープの引き上げ 荷重を増大させる効果がより大きいといえる。現実の再 造林地では森林総合研究所四国支所構内のような良く締 まった造成土でないことはもちろん、今治市郊外皆伐地 で試験をおこなったような尾根筋よりもさらに土壌が緩 い場所が多くあるはずなので、防護柵の裾ロープのアン カー杭を増やすことは引き上げ荷重を増大させることに 有効と考えられる。

飼育個体を使った実験からイノシシが鼻先で持ち上げ る力は 366 から 706 N (533 ± 115 N、n = 6、西日本農業研 究センター 2016) とされ、イノシシは地際にできた 20 cm 程度の隙間を通り抜けることができる (江口 2003)。農地 に設置された金属メッシュ柵の地際部分をイノシシに持 ち上げられないように、西日本農業研究センター (2016) では単管パイプを使って金属メッシュ柵の地際とアン カー杭と連結することを提案している。本試験で引き抜 き強度の大きかったタイプⅠやⅢのアンカー杭でも、垂 直に引き抜く場合はイノシシの力に対抗しがたいといえ るが、斜め45度に引き抜く場合には強度が上がりイノ シシに対抗できる場合が増えると予想される (Fig. 6)。防 護柵の上下端や控え索に使われるポリプロピレン製やポ リエチレン製の三つ撚りロープの場合、破断の強度は4 mm 径では 1.5 から 1.7 kN、6 mm 径では 3.0 から 3.9 kN ほどあり (各種製造メーカの公表値)、アンカーの引き抜 き強度やイノシシの鼻先持ち上げ力よりもはるかに大き い。現状では再造林地の防護柵の裾ロープはアンカー杭 と連結されずに杭頂部でおさえられているだけだが、個々 のアンカー杭の頂部を裾ロープと連結しておけば裾ロー プを動物が持ち上げた際にはアンカー杭に垂直ではなく

斜め方向の荷重がかかるので、現状よりも大きな引き上 げ荷重に耐えられると予想される。農地で提案された単 管パイプによる補強方法は傾斜や凸凹のある再造林地で は適用しにくいが、アンカー杭と裾ロープを針金などで 連結・固定することは実行可能であろう。入手可能な資 材をうまく組み合わせながら改良を加えることによって、 現状よりも強固な防護柵を実現できると考えられる。

謝辞

アンカー杭の引き抜き試験にあたって、香美森林組合 および越智今治森林組合の協力を得た。この試験は森林 総合研究所交付金プロジェクト2「シカ激害地における 防護柵保守の効果実証試験」の一環としておこなった。

引用文献

- 堂山 宗一郎・江口 祐輔・上田 弘則 (2016) ホンシュ
 ウジカが通り抜けられる隙間サイズの測定 . Anim.
 Behav. Manag., 52, 171–179.
- 江口 祐輔 (2003) イノシシから田畑を守る おもしろ生態 とかしこい防ぎ方. 農山漁村文化協会, 149pp.
- 伊藤 圭典・前原 雅幸 (1986) 場所打ち杭の引抜き抵抗 に関する実験と考察.土木学会論文集, 376, 59-67.
- 木全 卓・工藤 庸介・桑原 孝雄・山形 俊彦・北島 弘伸・望月 政和 (2006) 温室用基礎としての斜杭の 有用性に関する研究-杭長および地盤状態の違いが 引き抜き特性に及ぼす影響について-.大阪府立大 学大学院生命環境科学研究科学術報告,58,1-5.
- 小長井 信宏・宮田 典幸 (2021) シカ防護柵アンカーの 材質・形状による引抜き耐力の違い.日本森林学会 大会発表データベース,132,402.
- 日下 昭宏・法眼 利幸 (2018) ニホンジカとイノシシの 誘引餌を用いた森林防護柵の強度試験.日本森林学 会大会発表データベース,129,444.
- 三重県林業研究所 (2016) "スギ、ヒノキの植栽苗木をシ カの食害から守るために必要なことは?", https:// www.pref.mie.lg.jp/ringi/hp/89728000001.html, (参照 2022-2-22).
- 日本造園学会 (2000) 緑化事業における植栽基盤整備マ ニュアル.ランドスケープ研究, 63, 224-241.
- 西日本農業研究センター (2016) " 侵入防止柵の接地部を 直管パイプで補強することで、イノシシのくぐり 抜けを防止できる", https://www.naro.go.jp/project/ results/4th_laboratory/warc/2016/16_055.html, (参照 2022-2-22).
- 農林水産省 (2021) 食料・農業・農村白書 令和3年版.日 経印刷, 375pp.
- 尾崎 真也 (2001) 兵庫県におけるニホンジカによる幼齢 造林木被害とその防除.兵庫県立森林・林業技術セ ンター研究報告,49,19–23.
- R Core Team (2021) R: A language and environment for

statistical computing. R Foundation for Statistical Computing, Vienna, Austria.

- 林野庁 (2021) 令和3年版 森林・林業白書. 全国林業改良 普及協会, 391pp.
- 佐渡 靖紀・田戸 裕之 (2017) 複合獣種対応型被害防護 柵の開発.山口県農林総合技術センター研究報告,8, 12-22.
- 酒井 敦 (2018) 皆伐・再造林地におけるシカ防護柵の実 態と被害対策.水利科学,61,101–113.
- 四国森林管理局 (2019) "四国森林管理局のシカ森林被

害対策の取組", https://www.rinya.maff.go.jp/shikoku/gijutu_c/sikahigaitaisaku.html, (参照 2022-2-22).

- 森林整備センター (2020) "シカ害防除マニュアル~防 護柵で植栽木をまもる~", https://www.green.go.jp/ gijutsu/pdf/zorin_gijutsu/deer_pest_control_manual.pdf, (参照 2022-2-22).
- 高柳 敦・吉村 健次郎 (1988) カモシカ・シカの保護管 理論に関する一試論.京都大学農学部演習林報告, 60,1–17.

Tests for deer-proof fence components : pole bending strength, anchor pile pull-out resistance and lifting load of lower-end rope

Tatsuya OTANI^{1)*} and Reiji YONEDA¹⁾

Abstract

Strength tests for components of deer-proof fences were conducted for pole bending, anchor pile pulling-out, and lower-end rope lifting. Although all of 7 pole products were marketed as anti-animal fence poles, the mean pole-bending strength for each product ranged from 66 N to 396 N. Two types of longer anchor piles exhibited the greatest resistances for all horizontal, diagonal, and vertical directions of pull-out tests, and anchor pile showed higher pull-out resistance in the developed clay soil than in the forest soil. The resistances of anchor pile pulling-out for diagonal direction were larger than those for vertical direction, thus we proposed improving deer-proof fences by connecting the lower-end rope and anchor pile tops so that the anchor piles receive a diagonal pulling force, increasing their resistance over receiving a vertical pulling force.

Key words : load cell, sika deer, soil penetrometer, soil property, wild boar

Received 8 April 2022, Accepted 17 May 2022

¹⁾ Shikoku Research Center, Forestry and Forest Products Research Institute (FFPRI)

^{*} Shikoku Research Center, FFPRI, 2-915 Asakuranishimachi, Kochi, Kochi, 780-8077 JAPAN; E-mail: tatsuyao@affrc.go.jp

研究資料(Research record)

北海道東部弟子屈天然林における長期林分成長モニタリング

石橋 聰^{1)*}、古家 直行¹⁾、鷹尾 元²⁾、髙橋 正義³⁾、佐々木 尚三⁴⁾

要旨

北海道東部弟子屈天然林における林分成長を 69 年間モニタリングした。その結果、期間内の林分材積 はおおむね横ばい傾向を示し、成長量と枯損量がほぼ釣り合っていた。一方、広葉樹を主体に立木本数は 増え、直径階本数分布は逆J字型が強まった形状に変化していた。これらのことから、本林分のような老 齢林では、長期間林分材積が一定の水準で推移して安定しているようにみえても、その内部では樹種構成 や林型といった林分構造に変化が起きていることが示された。

キーワード:長期モニタリング、老齢林、林分構造、林分材積

1. はじめに

北海道の天然林においては、開拓以来、木材生産のた めの施業方法として択伐が行われてきた。この天然林択 伐施業を行っていくためには、保続を目標とした収穫規 整のための成長量や枯死量の把握などが必要であるが、 戦前まではその把握が十分ではなかった。そのため、北 海道の森林面積の55%を占め、天然林択伐施業を主に担っ てきた国有林では、1950年代から当時の北海道内5営林 局が天然林成長量把握などを目的とした固定試験地を各 管内に設定し、調査を行ってきた。その後、1990年代ま でにほとんどの試験地は廃止されたが、その一部は森林 総合研究所北海道支所が引き継ぎ、調査を続けている(石 橋 2011)。本報では、そのうち旧帯広営林局管内にある 弟子屈天然林成長量固定試験地における 69 年間の調査結 果を報告する。

2. データと方法

2.1 試験地の概要

弟子屈天然林成長量固定試験地は、北海道森林管理局 根釧西部森林管理署弟子屈国有林 4047 林班い小班(北緯 43°27'52"、東経144°14'32")にある。この試験地は、旧帯 広営林局が天然林の成長量、枯死量および林分構造の推 移を把握検討し、施業計画樹立の基礎資料とするため、 管内に1950 年から1954 年にかけて設けた 30 か所の試験 地(帯広営林局1974)のうちの1か所である。

試験地は 1950 (昭和 25) 年秋に設定され、面積は 1 ha、 形状は 100 m×100 mの正方形で、標高 520 m、平均傾斜 20°の山腹南斜面にある (Fig. 1)。近隣の弟子屈のアメダ スデータ (1991 年~2020 年の平均値)によると、年平均 気温 5.2℃、年降水量 1092 mm である。地質は凝灰角礫 岩、土壌型は B_D型で、林床は桿高 130 cm 前後のクマイ ザサが繁茂している。なお、過去、試験地設定以前を含め、 試験地内では伐採などの施業は行われておらず、原生状 態を保っている。

1950年の試験地設定以降、調査は旧帯広営林局、旧北 海道営林局帯広営林支局によって行われてきたが、1989 年の調査を最後に試験地は廃止された。しかしながら、 長期にわたり調査が継続され、原生状態を保った貴重な 天然林であることから、今後の天然林動態や施業研究に 資するため、森林総合研究所北海道支所が調査を引き継 ぐこととし、2000年から調査を行ってきた。

2.2 調査データと集計方法

2.2.1 毎木調査

毎木調査は1950年秋の設定時以降、1959年秋、1965 年秋、1974年9月、1979年9月、1989年9月、2000年 3月、2004年9月、2010年5月、2015年5月、2019年9

Fig. 1. 位置図

原稿受付:令和4年5月12日 原稿受理:令和4年7月5日

¹⁾ 森林総合研究所 北海道支所

²⁾ 森林総合研究所 関西支所

³⁾ 森林総合研究所 森林災害·被害研究拠点

⁴⁾ 元森林総合研究所 北海道支所

^{*} 森林総合研究所 北海道支所 〒 062-8516 北海道札幌市豊平区羊ヶ丘 7

月の11回実施した。試験地内の胸高直径(山側地際から 1.3 m) 5 cm 以上の全生立木について、1989 年の 6 回目調 査以前は 2 cm 括約単位 (輪尺)、2000 年の 7 回目調査以 降は1mm単位(直径巻尺)で、個体識別のうえ胸高直径 の測定を行った(本報の集計では2 cm 括約単位に統一し た)。ただし、1回目から3回目調査までは、調査木個体 ごとのデータは失われ、トドマツ、エゾマツ、広葉樹別 の2 cm 括約胸高直径階ごとの本数データのみ現存する。 また、4回目から6回目調査までは、調査木個体データ はあるものの、広葉樹の中に樹種判別されていない調査 木があり、さらに森林総合研究所北海道支所が行った7 回目調査において、番号札が剥落し個体番号が不明な調 査木があったため、全ての調査木の個体識別が引き継げ なかった。これらのことから、本試験地においては、現 地区画は明瞭であり調査回ごとの試験地区画全体につい てトドマツ、エゾマツ、広葉樹別に集計した立木本数、 林分材積は使用可能であるが、6回目調査以前のデータ では、詳細な樹種構成や枯死量、進界量の把握ができな いという制約がある。

なお、本報では各調査回のうち春に調査が行われた場 合の調査年表記は、成長期間と一致させるため前年の表 記とした。

2.2.2 幹材積

立木の幹材積は、毎木調査により得られた胸高直径と、 樹高曲線により算出した樹高により2変数幹材積表(帯 広営林局 1961)から求めた。樹高曲線は2004年の8回目 調査時に樹高を抽出調査し、トドマツ、エゾマツ、広葉 樹別に作成した。

樹高曲線式は、人工林、天然林ともに良く適合する Näsulund 式 (北方林業会 1983)を使用した。

$$H = 1.3 + \frac{D^2}{(a + bD)^2}$$

ここで、*H*:樹高 (m) 、*D*:胸高直径 (cm) 、a、b は定 数である。樹種区分ごとのデータ数およびパラメータを Table 1、樹高曲線を Fig. 2 に示す。

Table 1. 樹種区分別樹高曲線パラメータ

樹種区分	データ数	a	b	決定係数
トドマツ	29	2.4117814	0.1731209	0.95
エゾマツ	45	3.0500394	0.1431978	0.91
広葉樹	34	1.7158221	0.1920916	0.85

2.2.3 枯死木の形態調査

7回目から11回目調査においては、4つの各調査期間 内に発生した胸高直径35 cm以上(調査期間期首の生立 時)の大径枯死木について、期間末における枯死形態を 記録した。枯死形態は「立枯れ」「幹折れ」「根元折れ」「根 返り」の4区分とした。立木状態で幹全部が残っている 枯死木を「立枯れ」、幹が折れているもののうち幹折れ部 位が高さ1m以上の枯死木を「幹折れ」、1m未満を「根 元折れ」とした。なお、「立枯れ」は調査期間末での状況 であり、その期間内で枯死当初「立枯れ」であっても、 その後「幹折れ」等に変化している可能性がある。

2.3 用語の定義

本報では立木の胸高直径を 6 cm ごとにくくり「胸高直 径階」とし、各階をその中央値で呼称する。たとえば、 胸高直径階 8 cm は 5 cm 以上 11 cm 未満、14 cm は 11 cm 以上 17 cm 未満を示し、62 cm \leq は 59 cm 以上を示す。ま た、径級区分として「小径木」は胸高直径階 8 cm、14 cm、20 cm、「中径木」は胸高直径階 26 cm、32 cm、「大 径木」は胸高直径階 38 cm 以上とする。さらに、各調査 時に新たに胸高直径が 5.0 cm 以上となった生立木を「進 界木」と呼ぶ。

3. 結果と考察

69年間の林分材積、胸高断面積合計(以下 BA とする) と立木本数の推移を Fig. 3、胸高直径階本数分布を Fig. 4 に示した。また、7回目調査以降の林分諸因子を Table 2、 69 年間の樹種構成の変化を Table 3 に示した。

Table 2. 林分諸因子 (1999 年 ~ 2019 年)

		1999		2004		2009		2014	2014		
	針葉樹	229	(47)	245	(48)	257	(52)	305	(57)	294	(58)
立木本数 (ha-1)	広葉樹	262	(53)	268	(52)	241	(48)	232	(43)	214	(42)
	計	491		513		498		537		508	
	針葉樹	27.0	(79)	27.0	(78)	28.0	(78)	27.6	(77)	24.7	(74)
BA $(m^2 \cdot ha^{-1})$	広葉樹	7.1	(21)	7.7	(22)	7.8	(22)	8.1	(23)	8.5	(26)
	計	34.2		34.7		35.8		35.8		33.2	
	針葉樹	303.1	(84)	303.5	(83)	316.7	(84)	310.6	(83)	275.2	(80)
林分材積 (m³•ha-1)	広葉樹	55.9	(16)	60.3	(17)	61.6	(16)	64.5	(17)	68.1	(20)
	計	359.0		363.8		378.3		375.1		343.3	
	針葉樹			25.3	(81)	20.7	(84)	22.4	(80)	20.6	(84)
成長量 * (m ³ •ha ⁻¹)	広葉樹			5.8	(19)	4.1	(16)	5.8	(20)	4.0	(16)
	計			31.2		24.8		28.2		24.6	
	針葉樹			26	(43)	22	(38)	16	(42)	36	(64)
枯死木本数 (ha-1)	広葉樹			35	(57)	36	(62)	22	(58)	20	(36)
	計			61		58		38		56	
	針葉樹			25.4	(93)	7.9	(73)	29.1	(91)	56.1	(99)
枯死量 (m³•ha-1)	広葉樹			1.9	(7)	2.8	(27)	3.0	(9)	0.5	(1)
	計			27.3		10.7		32.1		56.6	
	針葉樹			42	(51)	34	(79)	64	(83)	25	(93)
進界木本数 (ha-1)	広葉樹			41	(49)	9	(21)	13	(17)	2	(7)
	計			83		43		77		27	

* 枯死量を差し引かない粗成長量。期末の進界木材積は含まない。

注) 端数処理のため計の値が一致しない場合がある。

()内は調査地計に占める割合。単位:%

Table 3. 樹種構成の変化

掛種			7	本数	(ha-1))					BA	. (m ²	² • ha	-1)					材	積 (m	³ • ha ⁻	1)		
啣悝	19	50	19	74	19	99	20	19	19	50	1974	4	19	99	20	19	195	50	197	/4	199	99	201	.9
ትት ግሥ	84	(23)	56	(16)	75	(15)	140	(28)	6.6	(19)	4.5 (12)	4.2	(12)	3.3	(10)	59.0	(16)	40.7	(10)	38.0	(11)	26.0	(8)
エソ゛マツ	159	(43)	158	(45)	154	(31)	154	(30)	22.6	(67)	25.7 (71)	22.8	(67)	21.4	(64)	261.8	(73)	302.6	(77)	265.2	(74)	249.2	(73)
針葉樹計	243	(66)	214	(61)	229	(47)	294	(58)	29.2	(86)	30.2 (83)	27.0	(79)	24.7	(74)	320.8	(89)	343.3	(87)	303.1	(84)	275.2	(80)
ミズ・ナラ	-		-				1	(0)	-		-				0.0	(0)	-		-				0.1	(0)
ハリキ゛リ	-		-		6	(1)	6	(1)	-		-		0.3	(1)	0.4	(1)	-		-		2.0	(1)	3.6	(1)
シナノキ	-		-		29	(6)	28	(6)	-		-		2.4	(7)	2.9	(9)	-		-		20.7	(6)	24.8	(7)
カツラ	-		-		6	(1)	4	(1)	-		-		0.3	(1)	0.3	(1)	-		-		2.2	(1)	2.4	(1)
ウダ イカンハ	-		-		10	(2)	7	(1)	-		-		0.4	(1)	0.5	(2)	-		-		2.8	(1)	4.1	(1)
キハタ"	-		-		21	(4)	14	(3)	-		-		0.2	(0)	0.3	(1)	-		-		0.8	(0)	1.8	(1)
オヒョウ	-		-		18	(4)	9	(2)	-		-		1.5	(4)	1.6	(5)	-		-		12.9	(4)	13.8	(4)
シウリサ゛ クラ	-		-		6	(1)	5	(1)	-		-		0.3	(1)	0.2	(1)	-		-		1.9	(1)	1.8	(1)
イタヤカエデ	-		-		1	(0)	3	(1)	-		-		0.0	(0)	0.1	(0)	-		-		0.3	(0)	0.7	(0)
ハウチワカエデ	-		-		23	(5)	32	(6)	-		-		0.2	(1)	0.3	(1)	-		-		1.0	(0)	1.7	(1)
オガラバナ	-		-		24	(5)	8	(2)	-		-		0.2	(1)	0.1	(0)	-		-		1.0	(0)	0.3	(0)
サクラ類 *1	-		-		1	(0)			-		-		0.0	(0)			-		-		0.0	(0)		
ፉ" ケカンハ"	-		-		65	(13)	75	(15)	-		-		1.0	(3)	1.4	(4)	-		-		7.9	(2)	9.6	(3)
ケヤマハンノキ	-		-		19	(4)	5	(1)	-		-		0.2	(1)	0.2	(1)	-		-		1.1	(0)	1.6	(0)
ミヤマハンノキ	-		-		7	(1)	5	(1)	-		-		0.0	(0)	0.1	(0)	-		-		0.2	(0)	0.4	(0)
ナナカマト゛	-		-		3	(1)	5	(1)	-		-		0.0	(0)	0.1	(0)	-		-		0.1	(0)	0.3	(0)
ハ゛ッコヤナキ゛	-		-		23	(5)	7	(1)	-		-		0.2	(1)	0.2	(0)	-		-		0.8	(0)	1.1	(0)
広葉樹計*2	127	(34)	138	(39)	262	(53)	214	(42)	4.8	(14)	6.2 (17)	7.1	(21)	8.5	(26)	38.9	(11)	50.5	(13)	55.9	(16)	68.1	(20)
合計	370		352		491		508		34.0		36.4		34.2		33.2		359.7		393.8		359.0		343.3	

*1 エゾ ヤマサ クラ 、ミヤマサ クラ

*2 1950年は広葉樹樹種の記載がなく、1974年は広葉樹のうち樹種名不明の個体が混在しているため、広葉樹合計のみとした。

注1) 端数処理のため計の値が一致しない場合がある。

2)()内は占有割合。単位:%

1) 現在の林況

2019年の立木本数は 508本・ha⁻¹、BA は 33.2 m²・ha⁻¹、 林分材積は 343.3 m³・ha⁻¹ だった (Table 2)。この BA と林 分材積の数値は、原生状態の北方天然林としては既報 (石 橋 2011)の林分より小さいが、これは本林分では上層林 冠の疎開度合いが大きいためと思われる (Photo 1)。樹種 構成は材積率で 73%をエゾマツが占め、トドマツとあわ せ 80%を針葉樹が占めているが、立木本数でみるとエゾ マツ 30%、トドマツ 28%のほか、ダケカンバを筆頭に広 葉樹が 42%を占め、針葉樹、広葉樹がほぼ半々の林分で ある (Table 3)。北海道の針広混交林は、標高が高くなる につれミズナラ、シナノキなどの温帯性広葉樹が減少し、 エゾマツを主体に針葉樹が増加して亜寒帯性針葉樹林に 移行する (柳沢 1971)が、本林分は林分材積で 2 割弱の 温帯性広葉樹が混交しており、針広混交林域の上部に位 置しているとみられる。

2) 林分構造の変化

69年間の林分材積の推移をみると、ゆるやかな上下は あるものの、300~400 m³・ha⁻¹の間を推移しており、期 間全体でみればおおむね横ばい傾向で、成長量と枯死 量がほぼ釣り合っているといえる (Fig. 3、Table 2)。ま た、BA は最大値 36.8 m²・ha⁻¹ (1979年)から最小値 34.0 m²・ha⁻¹ (1950年)の間の値で、横ばい傾向に推移した (Fig. 3)。立木本数も全般的に変化は小さいが、1989年か ら 1999年にかけては増加した (Fig. 3)。これは、試験地 内の沢沿いに生じた崩壊地に更新したバッコヤナギ、ケ ヤマハンノキ等や、試験地内斜面の枯死木跡に集団状に 更新したダケカンバが進界したことが主な要因であり、 1999年の胸高直径階本数分布における広葉樹小径木の増 加にあらわれている (Fig. 4)。

69 年間のトドマツ、エゾマツ、広葉樹別の樹種構成の 変化をみると、エゾマツは立木本数、BA、林分材積の構 成割合に大きな変化はみられないのに対し、トドマツは 立木本数が増加する一方、BA、林分材積は減少しており、 広葉樹は立木本数、BA、林分材積すべてで増加していた (Table 3)。これは、トドマツ、広葉樹ともに進界木によ る立木本数の増加があるものの、トドマツは大径木を主 体とした枯死木が多数発生しているためである。

胸高直径階本数分布の変化をみると、エゾマツの小径 木が安定的に現れており、択伐施業林(石橋 2021)とは 異なる傾向である (Fig. 4)。これは、択伐施業林では倒木 が減少し、主に倒木更新に更新を依存するエゾマツ(夏 目 1984)はほとんど更新できないが、本林分ではトドマ ツ、エゾマツ大径木の枯死が続いて倒木が供給されてお り、これらの倒木上や根返りマウンド上にエゾマツが更 新し、進界しているためとみられる (Photo 2)。また、69 年間の林分全体の胸高直径階分布の変化をみると、小中 径木が増加して逆 J 字型の分布形状が強まってきており、 林型が変化していた (Fig. 4)。

Fig. 4. 胸高直径階本数分布

胸高直径階 8 cm は 5 cm 以上 11 cm 未満、14 cm は 11 cm 以上 17 cm 未満を示す。以降同じ。62 cm ≦ は 59 cm 以上である。 このように、本林分のような老齢林 (藤森 2003) におい ては、長期間でみると、林分全体での材積や BA には大 きな変動がなく安定しているようにみえても、樹種構成 や林型といった林分構造に変化が起きていることが、既 報(石橋 2011) と同様、本林分においても示された。

3) 大径枯死木の発生とその形態

Table 4 には7回目調査以降の各調査期間におけるトド マツ、エゾマツ、広葉樹別の大径(胸高直径 35 cm 以上) 枯死木の本数とその形態を示した。大径枯死木は、各調 査期間において10~16本発生しており、その形態は全 期間全樹種込みでみると、立枯れが 62%、幹折れ(根元 折れを含む)が26%、根返りが12%で、立枯れが最も多 かった (Table 4)。ただし、立枯れの本数が多くなったのは、 2014~2019年の調査期間に試験地内のエゾマツが集団 状に立枯れたことが大きな要因である (Photo 3)。このよ うなエゾマツ大径木の集団状の立枯れは、エゾマツが優 占する天然林にしばしばみられ(渡邊 1933)、立木の生理 的衰弱を誘因としたヤツバキクイムシ等の穿孔虫の寄生 によるとされる (山口・小泉 1962)が、本林分について は不明である。今回の調査結果から、本林分のような老 齢林においては、本数の変動はあるものの、大径の枯死 木は様々な形態で間断なく発生していることが示された。 枯死木のうち、たとえば立枯れ木は樹洞営巣性鳥類をは じめとして様々な動物に利用され(松岡・高田 1999)、ま

Table 4. ナ	、径札	「死フ	トの形	態別	本数
------------	-----	-----	-----	----	----

調本対象期	1問(在)	1999–	2004-	2009-	2014-	-	計
则且对家族	11日(十)	2004	2009	2014	2019	I	31
立枯れ *	トドマツ	2	2	5	2	11	(65)
	エゾマツ	3			10	13	(59)
	広葉樹	1	1			2	(67)
	計	6	3	5	12	26	(62)
幹折れ	トドマツ	1	1	1		3	(18)
	エゾマツ			3		3	(14)
	広葉樹			1		1	(33)
	計	1	1	5	0	7	(17)
根元折れ**	トドマツ					0	(0)
	エゾマツ			1	3	4	(18)
	広葉樹					0	(0)
	計	0	0	1	3	4	(10)
根返り	トドマツ	2			1	3	(18)
	エゾマツ	1	1			2	(9)
	広葉樹					0	(0)
	計	3	1	0	1	5	(12)
全体	トドマツ	5	3	6	3	17	
	エゾマツ	4	1	4	13	22	
	広葉樹	1	1	1	0	3	
	計	10	5	11	16	42	

^{*} 立木状態で幹全部が残っている枯死木

注)調査期間期首において胸高直径 35.0 cm 以上 (大径木) の生立木を対象とした。 た倒木はエゾマツなどの亜寒帯性針葉樹にとっては重要 な更新床である(夏目 1984)。そのため枯死木の形態を 観察、記録していくことは森林生態研究を進めるうえで も重要であり、今後もデータの蓄積が必要である。

4. おわりに

北海道における天然林択伐施業を今後も進めていくた めには、択伐施業が天然林の動態に及ぼす影響を解明し、 その結果をもとに施業管理技術を向上させることが必要 である。そのためには施業が行われている林分だけでな く、本試験地のようなその対照となる施業が行われてい ない自然攪乱下での天然林動態を明らかにして、両者を 定量的に比較、検討できるようにする必要があり、両者 の長期林分成長モニタリングデータは必須である。今後 もこれらの試験地の調査が継続されることを望みたい。

本試験地の設定と長年にわたり調査を行ってきた旧帯 広営林局、旧北海道営林局帯広営林支局および現在当地 を維持管理している北海道森林管理局根釧西部森林管理 署の職員各位に感謝申し上げる。また、調査等に協力頂 いた森林総合研究所北海道支所職員各位に感謝申し上げ る。

引用文献

- 藤森 隆郎 (2003) 新たな森林管理—持続可能な社会に向 けて. 全国林業改良普及協会, 428pp.
- 北方林業会 (1983) 北海道林業技術者必携 下巻.北方林業 会,544pp.
- 石橋 聰 (2011) 北方系針広混交林の林分構造と成長の長 期推移.日本森林学会誌,93,64-72.
- 石橋 聰 (2021) 松川実験林が教えてくれること—天然林 択伐施業試験 70 年の成果—. 森林技術, 952, 24-27.
- 松岡 茂・高田 由紀子 (1999) キツツキ類にとっての立 枯れ木と森林管理における立枯れ木の扱い. Jpn. J. Ornithol, 47, 33–48.
- 夏目 俊二 (1984) エゾマツ更新の立地条件と初期生長に 関する研究.北海道大学農学部演習林研究報告,42, 47–107.
- 带広営林局 (1961) 立木幹材積表. 带広営林局, 21pp.
- 帯広営林局 (1974) 帯広営林局の林業諸試験.帯広営林局, 215pp.
- 山口 博・小泉 力 (1962) 天然生林における針葉樹枯損 木の発生について.日本林学会北海道支部講演集, 11, 17–20.
- 柳沢 聰雄 (1971) トドマツ・エゾマツ・アカエゾマツの 新しい天然更新技術.柳沢 聰雄・山谷 孝一・中 野 實・前田 禎三・宮川 清・加藤 亮・尾方 信夫著 "新 しい天然更新技術",創文,1–78.
- 渡邊 兵左衛門(1933)北海道に於けるトドマツ、エゾマ ツを主林木とせる天然林の作業種に關する一考察. 林學會雑誌,12,78-89.

^{**} 幹折れ部位が高さ1m未満の枯死木

⁽⁾内は樹種ごとの形態割合。単位:%

Photo 1. 弟子屈天然林成長量固定試験地 の林相 (2019 年 9 月)

エゾマツを主体にトドマツ、広 葉樹が混交する林分である。林 冠が疎開し明るいため、林床の 大部分にクマイザサが密生して いる。

Photo 2. 林床の倒木更新 (2019 年 9 月) 林床には過去の枯死木由来の倒 木があり、古い倒木上にはエゾ マツ、トドマツの更新がみられ る。

Photo 3. エゾマツ大径木の集団状の立 枯れ (2019 年 9 月) これらは 2015 年 5 月以降に枯 死し、集団状の立枯れとなっ た。

Long-term stand growth of an old-growth forest in Teshikaga, eastern Hokkaido

Satoshi ISHIBASHI^{1)*}, Naoyuki FURUYA¹⁾, Gen TAKAO²⁾, Masayoshi TAKAHASHI³⁾ and Shozo SASAKI¹⁾

Abstract

The stand growth of an old-growth forest in Teshikaga, eastern Hokkaido (northern Japan), was monitored over 69 years. There was little change in stand volume throughout the period; growth and stand mortality were almost balanced. However, the number of broad-leaved trees increased and the diameter-at-breast height class distribution changed to an inverted J shape. These results suggest that, in old-growth forest stands, the species composition and stand type change despite long-term stability in terms of the overall stand volume.

Key words : long-term monitoring, old-growth forest, stand structure, stand volume

Received 12 May 2022, Accepted 5 July 2022

¹⁾ Hokkaido Research Center, Forestry and Forest Products Research Institute (FFPRI)

²⁾ Kansai Research Center, FFPRI

³⁾ Center for Forest Damage and Risk Management, FFPRI

^{*} Hokkaido Research Center, FFPRI, 7 Hitsujigaoka, Toyohira, Sapporo, Hokkaido, 062-8516 JAPAN; E-mail: sa9267@ffpri.affrc.go.jp

国立研究開発法人 森林研究・整備機構 森林総合研究所 Forestry and Forest Products Research Institute

```
「森林総合研究所研究報告」を送付させていただきますのでお受け取り下さい。
送付先などが変わりましたら本研究所編集刊行係 (kanko@ffpri.affrc.go.jp) までご連絡ください。
また、貴刊行物と交換願えれば幸いです。
```

Please, find an enclosed Bulletin of the Forestry and Forest Products Research Institute. Let us know when the name of your institution and mailing address are changed. We greatly appreciate receiving any relevant publications in exchange.

> Officer in charge at publication section Forestry and Forest Products Research Institute 1 Matsunosato, Tsukuba, Ibaraki, 305-8687 JAPAN Tel : + 81-29-829-8373 Fax : + 81-29-873-0844 E-mail : kanko@ffpri.affrc.go.jp

2022年9月発行		森林総	合研究所研究報告 第 21 巻 3 号 (通巻 463 号)
編	集	人	森林総合研究所研究報告編集委員会
発	行	人	国立研究開発法人 森林研究・整備機構 森林総合研究所 〒 305-8687 茨城県つくば市松の里 1 番地 電話:029-829-8373 Fax:029-873-0844
印	刷	所	株式会社デジタル印刷 〒 300-3262 茨城県つくば市蓮沼 1322-1 電話:029-877-1331 Fax:029-864-6602

©2022 Forestry and Forest Products Research Institute

BULLETIN

of the Forestry and Forest Products Research Institute

森林総合研究所研究報告 Vol. 21 No. 3 (No. 463)

■論 文

▽太平洋側型ブナと日本海側型ブナ成木樹冠内の葉の可塑性の違い(英文) 上村 章、原山 尚徳、石田 厚

Coordination between leaf water relations and leaf gas exchange in two ecotypes of Fagus crenata tree Akira UEMURA, Hisanori HARAYAMA and Atsushi ISHIDA

▽異なる二酸化炭素濃度で短時間処理したスギ針葉のトランスクリプトーム比較(英文)
 伊原 徳子、飛田 博順、宮澤 真一
 Changes in the *Cryptomeria japonica* shoot transcriptome after short-term treatments with different concentrations of CO₂
 Tokuko UJINO-IHARA, Hiroyuki TOBITA and Shin-Ichi MIYAZAWA

■短 報

▽排水用竹粗朶の製作および設置コスト算出と歩掛の検討 山口 智、田中 良明、鈴木 秀典 Determination of production cost, installation cost and examination of steps involved in bundled bamboo for drainage Satoshi YAMAGUCHI, Yoshiaki TANAKA and Hidenori SUZUKI

▽無花粉スギ系統の迅速な判別に向けた簡易な PCR 産物可視化システム STH-PAS の適用(英文) 鶴田 燃海、上野 真義、丸山 毅、袴田 哲司、森口 喜成 Application of STH-PAS, a novel chromatographic visualization system of PCR products for rapid screening of male-sterile lines in *Cryptomeria japonica* Momi TSURUTA, Saneyoshi UENO, Tsuyoshi E. MARUYAMA, Tetsuji HAKAMATA and Yoshinari MORIGUCHI

■ 研究資料

▽シカ防護柵に使われる各部材の強度試験
 ―支柱の折り曲げ・アンカー杭の引き抜き・裾ロープの引き上げ―
 大谷 達也、米田 令仁
 Tests for deer-proof fence components: pole bending strength, anchor pile pull-out resistance and lifting load of lower-end rope
 Tatsuya OTANI and Reiji YONEDA

▽北海道東部弟子屈天然林における長期林分成長モニタリング
 石橋 聰、古家 直行、鷹尾 元、髙橋 正義、佐々木 尚三
 Long-term stand growth of an old-growth forest in Teshikaga, eastern Hokkaido
 Satoshi ISHIBASHI, Naoyuki FURUYA, Gen TAKAO, Masayoshi TAKAHASHI and Shozo SASAKI

Forestry and Forest Products Research Institute

(国研)森林研究·整備機構 森林総合研究所 茨城県つくば市松の里1番地

1 Matsunosato, Tsukuba, Ibaraki, 305-8687 JAPAN https://www.ffpri.affrc.go.jp/ffpri.html

