古代の木彫像に 使われている 木材の正体

木材の樹種を調べることの重要性

問題解決につながることもあります。 ていた木片などの樹種を特定することで 輸入された木材、 要です。また、刑事事件の遺物や違法に ないのではないでしょうか。 さんの木材が使われています。しかし、そ 用するときには、樹種を知ることが最も重 て大きくちがいます。ですから、木材を利 木材の種類を気にかける人は、 わたしたちの身近な暮らしでは、たく 木材の性質はその樹の種類(樹種)によっ 木製品、 食品に混入し

非破壊で、木彫像の樹種を調べる

仏像など考古学的に重要な文

木材の樹種を調べる方法

する方法です。顕微鏡を使って、手が 的な方法は、木材を薄くスライスして顕 りとなる特徴的な組織や構造を見つけ出 微鏡で観察し、その特徴から樹種を特定 し、それをもとに候補となる樹種をしぼっ 木材の樹種を識別するための最も一般

木彫像は木材でつくられています。建築

日本の寺社、城などの建築物の多くや

剝離してくる微小な木材片の樹種を調べ、 の変遷について明らかにしてきました。 奈良時代以降に製作された木彫像の樹種 総研でも、この方法で木彫像から自然に これら一連の方法を用いることで、食品 検索する方法が主流になってきています。 の樹種も識別することができます。 に混入しているような数ミリ角の木材片 行うのではなく、 現在では、識別を経験のみに基づいて 個々の特徴を検索表で

かを調べることは、とても重要です。

的および社会的な背景を分析するために とともに、それらがつくられた時代の文化 物や木彫像の修復をより忠実に実施する

どのような樹種の木材が使われている

なります。そこで近年、わたしたちは近 化財については非破壊での調査が原則と

赤外分光法を用いて非破壊で樹種を調べ

木彫像からの近赤外線の 吸収データの測定

木彫像の調査の様子(岐阜県可児市薬王寺の冬の お堂にて)

木材の標本からの近赤外線の吸収 -夕の測定

研究者の横顔

Q1. なぜ研究者に?

自然に恵まれた信州の田舎で育ったためか、 漠然と自然や生き物に関する仕事をしたいと 思っていました。大学時代を過ごした北海道 でさらにその気持ちは強くなり、自然を知る、 利用することの面白さに惹かれ、研究にはまっ ていきました。

Q2. 影響を受けた人など

大学、大学院時代の先生や友人の影響は大き かったと思います。大学院時代には同じような 境遇の仲間が多く、研究について話し合う機会 に恵まれました。そういった方々の多くは、現 在、研究者や教育者になっており、交流が続い ています。

Q3. いまホットなマイテーマは?

短期的には、非破壊で木材の樹種を調べる 方法を開発することです。現在研究で用いて いる近赤外線と木材との関係についてはまだ わからないことが多く、それを調べながら、 新しい技術の開発を進めていきたいと考えて います。長期的には、様々な樹木の木材のま だ調べられていない性質を調べ、有効な利用 方法を提案していきたいと考えています。

Q4. 若い人へ

私は子どもの頃から研究者を目指していた わけではありませんが、いろいろなことに興味 を持ち、自分で調べたり、考えたり、ものを作っ たりすることは好きでした。研究では早く答え を出すことも必要ですが、自分で答えを探し ながらゆっくりと進んで行く姿勢も大切にして ください。

安部 久 Abe Hisashi

木材加工・特性研究領域

0)

る方法に取り組んでいます。

近赤外分光法は、

身近なところでは

IП.

図3 近赤外線の吸収データを分析した木彫像(静岡県河津町南禅寺所蔵)の例

b:正確に判別されなかった針葉樹の像(保存状態:劣 **a**:正確に判別された針葉樹の像(保存状態:良い) 化が進行) C:正確に判別された広葉樹の像(保存状態:比較的良い) **d**:正確に判別されなかった広葉樹 の像(保存状態:劣化が進行)

樹 タを取り、そのデータに を区 づいて針葉樹と広葉 木材の標本からデ 別 する判 莂 モ デ

0.003

マザクラ、トチノキ、 た10種(針葉樹:カヤ、 、キの5種)を対象に、 ヤマキの5種、

を探ることにしました。 法を用いて分析するのが一般的です ņm います。 度の測定、 破壊で木彫像の樹種を調べる技術 **木彫像に多く用いられていることがわ** 間 わたしたちは、)の物質による吸収データを統計的 類を調べる装置などで広く活用され [にある近赤外線(波長800 一酸素濃度の測定、 この方法は、 空港でのペットボトルの中身 広葉樹:クスノキ、 近赤外分光法を用 シナ ヒノキ、 ま 農産物の 可視光線と赤外線 これまでの スギ、 ケヤキ、 5 0 0 糖度や ヒバ、 0 の調査で 可能性 いて非 な手 コ

▲ 針葉樹(木彫像) ▲ 針葉樹(標本) ● 広葉樹(木彫像) 広葉樹(標本) 0.003

図2 針葉樹・広葉樹を分けるモデルを用いた近赤外線吸収データ の分析結果

0

標本の材と、木彫像の材の分析データの傾きを比較することで、その材が 針葉樹(緑色)か、あるいは広葉樹(「橙」色)かを見きわめることができる。

進んだと考えます 樹種を非破壊で調べる技術の開発が1 を区別し得ることがわかりました図2。 きく2つの傾きにわかれ、針葉樹と広葉樹 て、 現在、 ました図3。 ものよりもより正確にわけることが 木材の劣化に関 保存状態のよい木彫像の方が、 さらに分析の この研究により、 事例を増

悪

めています 分析の精度を向上させる研究を進 する情報等も 木彫像 やす غع 加

タに適用したところ 写真2 写真3、 代に製作されたと推定される木彫像のデー 標本の場合と同様に、 ル式をつくりました写真し。 木彫像のデータも大 これを平安時 木材

 $-0.00\overline{3}$