微生物変換で 木材からつくりだす バイオマスプラスチック

木材の主要成分リグニン

れています。このパルプ化という工程で のもとになるパルプをつくる工程が含ま 業的に紙をつくる工程には、木材から紙 ても広く利用されています。 木材は、私たちの身近にある材料とし 化学反応を利用することで、木材か 建材や家具材の他に、 紙の原料とし 木材から工

> 利用されていますが、木材を効率的に利 高い材料用途への利用展開も期待されて エネルギーを生産するために燃料として リグニンの多くは、 らリグニンという化合物が取り除 用するという考えから、より付加価値の パルプ工場で木材から取り除かれた 工場の操業に必要な

微生物変換でリグニンから

度にとどまると言われています。 グニンを製造して工業的に利用している 廃液から大量生産できますが、 リグニンは、 製造可能なリグニン全量の2%程 潜在的にはパルプ工場 利用

進まない原因のひとつは、リグニンの化

OCH₃ НзСО HO HO HO **ОСН**3 H₃CO HO CHO СООН СООН COOH リグニン分解物 の混合物 OCH₃ соон ^{он} OCH₃ ÓН OCH₃ ÓН ÓН 微生物変換 単一の ポリマー原料 COOH COOH

微生物変換でリグニンから単一のポリマー原料をつくる

単一のポリマー原料をつくる

研究者の横顔

Q1. なぜ研究者に?

研究が好きで博士課程まで進みましたが、 研究職へのこだわりはなく、民間企業に就職 して研究から離れた時期がありました。研究 以外の仕事をする中で「やはり研究がいちば ん面白い!」と思い、いまに至ります。

Q2. 影響を受けた人など

大学の指導教官です。研究課題を設定する発 想力の大切さを学び、研究の面白さを知ること ができました。

Q3. 研究の醍醐味は?

リグニンは、植物が進化する過程で地球上 に出現した木質成分です。地球の歴史の中で、 長い時間をかけて微生物はリグニンを分解で きるようになりました。微生物によるリグニ ン分解に関する研究は、私が取り組んでいる マテリアル利用などの応用に特化した研究だ けでなく、微生物の進化の軌跡をたどること ができる壮大な研究だと思っています。

Q4. 若い人へ

大学の研究室から直接研究職に就く道があ ると思いますが、研究から離れても研究を通 してできた人とのつながりを大切にし、チャ ンスがきたときに動ける準備をしておくこと をお勧めします。

ペットボトルの原料と同じ化学構造をも

鈴木 悠造 Suzuki Yuzo

森林資源化学研究領域

変化 した写真1。 する微生物をつくり出すことに成功しま 謝して、2-ピロン-4-ジカルボン酸 の異なるさまざまなリグニン分解物を代 リマー原料) その分解物を食べた微生物の体内で構造 微生物が食べられる大きさまで分解 化させる研究に取り組んでいます。 最初に、 私たちの研究グループでは、 使いやすい形の単一の化合物に させることで単一の化合物 . 変

という化合物を高濃度で体内に蓄積 リグニンを化学的な方法等で を製造する研究を行っていま このPDCという化合物 化学構造 \widehat{P} は (%

> 着剤などの原料として利用できます。図2 1) つ ため、 るプラスチックフィルムやシー 現在は石油資源からつくられ 接

学構造がセル

ロースやたんぱく質など他

天然高分子と異なり、

非常に複雑であ

るためです。

そこで森林総研では、

微生物の

代謝機

新しいポリマー原料3CM

能を利用することで複雑なリグニンの構

等と協力して、 います。 分類される微生物の代謝機能を利用して 3 C M L の製造では真菌 (カビ) いう微生物の代謝機能を利用しましたが でいます図2。 化合物を製造するための研究に取り組 ボキシムコノラクトン(3CML) めに、大学 さらにリグニンの利用用途を広げるた (長岡技術科学大学、 PDCの製造には細菌と P DCに加えて3-カ 東京工業大学 の仲間に という

製造を目指しています ノックの グニンから新たなバ なる微生物 原料になるさまざまな化合物 の代謝 機 1 能 オマスプラス を利 用 て、

チ IJ

異

PDC生産微生物の培養槽

化学構造の異なるさまざまなリグニン分解物を代 謝して、PDCを高濃度で体内に蓄積する微生物 の培養に成功した。

真菌による中間代謝物 COOH COOH 3CML 3-カルボキシムコノラクトン 新しく生産技術を開発

図2 微生物によるリグニンの中間代謝物をポリマー原料に利用する