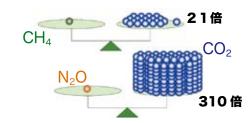
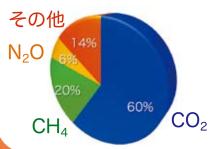

辞の世のまたらき

おり 森の土は、 森の土は、 温室効果ガスを 吸ったり、はいたり

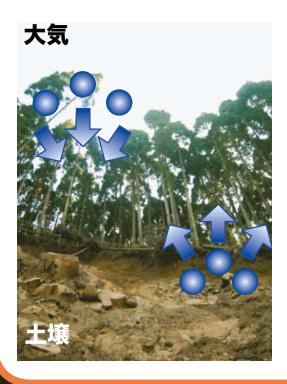



FFPRI

1 二酸化炭素だけじゃない温室効果ガス

大気中のガス濃度

二酸化炭素(CO₂) 0.037 % メタン(CH₄) 0.00022% 亜酸化窒素(N₂O) 0.000031%


メタン(CH_4)や亜酸化窒素 (N_2O) も、二酸化炭素(CO_2)と同様に温室効果ガスです。

 CH_4 、 N_2O の大気中の濃度は、 CO_2 と比べて、とても低い濃度です。

しかし、 CH_4 は CO_2 の 21 倍、 N_2O は CO_2 の 310 倍 も の 強 い 温室効果を持っています。

そのため、低い濃度にもかかわらず、 CH_4 や N_2O も温暖化に大きな影響をおよぼすガスです。

2 土から放出される二酸化炭素 (CO₂)

大気中の CO₂ は、木や草が おこなう光合成で吸収されます。

一方、土の中では、植物の根・動物・微生物の呼吸によってCO₂が発生しています。発生したCO₂は、土から大気へ放出されています。

土から CO_2 が放出されていても、多くの場合、森林全体は CO_2 の吸収源になっています。

3 土に吸収されるメタン (CH₄)

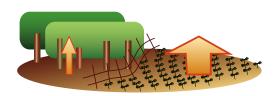
酸素が多い土(森の土)

CH₄ 微生物による分

CO₂

酸素が少ない土(水田)

有機物


生物による分削 ---

CH₄

酸素が多い森の土では、大気中の CH_4 は、土に吸収されます。これは、土の中に CH_4 を食べる微生物が住んでいるからです。食べられた CH_4 は、 CO_2 となり、大気へ放出されます。

一方、水田の土のような酸素が少ない土では、土から CH4が放出されます。これは、森の土とは別の微生物が、稲わらなどの有機物を分解して、CH4を作るためです。

4 土から放出される亜酸化窒素 (N₂O)

酸素が多い土

450

アンモニア 亜硝酸 硝酸 $NH_3 \rightarrow NO_2 \rightarrow NO_3$

酸素が少ない土

 μ_{S_C}

硝酸 $\stackrel{\text{亜硝酸}}{\mathsf{NO}_3}$ \rightarrow $\stackrel{\mathbb{E}^{3}}{\mathsf{NO}_2}$ $\stackrel{\mathbb{E}^{3}}{\rightarrow}$ $\stackrel{\mathbb{E}^{3}}{\mathsf{NO}_2}$

 N_2O は、土から大気へ放出されています。土の中に住む微生物が N_2O を作るためです。

森の土も、畑の土も N_2O を放出しますが、畑では、窒素(N)を含んだ肥料をまくので、よりたくさんの N_2O が放出されます。

工場や自動車が出す大気汚染物質が風に乗って、森林に降り注ぐようになると、N₂Oの放出量が増えることがあります。

応用編

Q:森の土から発生する温室効果ガスは、 CO_2 、 CH_4 、 N_2O だけでいいの?

A:はい、今回、紹介した3つのガスで十分です。 温室効果ガスとしては、他にもフロンがよく 知られています。しかし、フロンは人工的に 作られたガスで、土からは放出していません。

Q:木は CO_2 を吸収するけど、土が CO_2 を放出すると、温暖化を進めることになるのでは?

A:いいえ、違います。確かに土は CO₂ を放出しますが、土の中で CO₂ の材料となっているのは、植物の根、落ち葉などです。したがって、CO₂ を作るのも吸収するのも元をたどれば、植物ということになります。そして、多くの場合、葉から吸収される CO₂ の量は、土の中で植物が作る CO₂ の量よりも多いので、森林全体では CO₂ が吸収されています。

Q:日本の森の土は CH₄ を吸収する力は強いの? A:はい。日本は火山国で、火山灰の影響が強い フカフカした土(黒色土)が広く分布しています。このような土は、通気性が良く、CH₄を吸収する微生物が活発に働きやすい環境です。

Q:日本の森の土は N_2O を放出する力は強いの? A:いいえ、強くはありません。熱帯林やヨーロッパの温帯林と比べると、弱い傾向があります。 ただし、まだ原因がはっきりしないため、研究を進めています。

Q:結局のところ、日本の森の土は、温暖化を 和らげる力が強いってこと?

A:はい。森林全体で見ると、 CO_2 は吸収されています。さらに日本の森の土は、 CH_4 を吸収する力が強く、逆に N_2O を放出する力が弱いことがわかってきました。

したがって、 CO_2 、 CH_4 、 N_2O を合わせて考えると、日本の森の土は、温暖化を和らげる力が強いと考えられます。

森林土壌についてもっと詳しく知りたい方は… http://www.ffpri.affrc.go.jp/labs/soiltype/soilmuse_index.html

私たちの他の研究について知りたい方は… http://www.ffpri.affrc.go.jp/research/ryoiki/ new/03for-site-envi/new03.html

森林総合研究所について知りたい方は… http://www.ffpri.affrc.go.jp

> 編集·発行(2009年4月) 独立行政法人 森林総合研究所 立地環境研究領域

〒 305-8687 茨城県つくば市松の里 1 Tel: 029-873-3211, Fax: 029-874-3720