ス ギ の 高 速 乾 燥 -3 スギ人工乾燥材で強い構造物をつくる

構造利用研究領域 材料接合研究室

構造性能評価担当チーム長 木質構造居住環境研究室

原田 真樹、軽部 正彦、林 杉本 健一

三井 信宏、青井 秀樹

知行

背景と目的

「スギは乾燥が難しい」とよく言われます。これは、スギがその内部に非常に多くの水分を含んでおり、しか もそれが抜けにくく、乾燥によって内部割れなどが生じやすくなるためです。この乾燥の難しいスギを、高温で 効率よく人工的に乾燥させる技術が開発されてきました。しかし一方では、高温で乾燥させると木材が傷んで強 度性能が低下するのではないか、といった声も聞かれます。そこで、スギの人工乾燥材と乾燥させていないもの (生材) を用いて、いろいろな接合部と壁を作製し、その強度性能を比較しました。

成果

人工乾燥材を組んでみると

乾燥程度の異なったスギ人工乾燥材2種類とス ギ生材を用いてボルトの接合部と釘の接合部を作製 し、強さおよび剛性(変形のしにくさを示す値)を 比較しました。その結果、人工乾燥材を用いた接合 部は、生材に比べて、強さは変わらず、変形もしに くいことがわかりました(図1)。

スギを柱として使う場合を想定し、割れのある人 工乾燥材、割れていない人工乾燥材、生材の3種類 を用い、梁として集成材を用いた金物接合部を作製 して、強さおよび剛性を比較しました。その結果、 人工乾燥材を柱とする接合部は、割れがあっても生 材を柱とする接合部よりも強いが若干変形しやすく なることがわかりました(図2)。

さらに時間がたつと

土台と柱の接合部を、人工乾燥材および自然の状 態で乾燥させた材料(天然乾燥材)で作製し、1年 間風雨にさらした(屋外暴露試験)後に強さを測定 しましたが、いずれの接合部についても用いた金物 それぞれに対して定められている強さ以上の値を示

しました。

また、乾燥していないスギの柱と梁を用いて壁を 製作し、時間経過による強さと剛性の変化を調べま した。その結果、壁の強さは時間が経過して材料が 乾くのにともなって人工乾燥材の柱を用いた壁とほ ぼ同じ値まで増加しましたが、剛性は製作してから 半年(図3、矢印)で急激に低下し、その後時間が 経過して材料が乾燥しても低い値のままでした(図 3)

これらの結果から、スギ材でも乾燥条件を適切に 設定すれば、接合部を構成する材料として生材以上 の性能を発揮すること、そして、乾燥の不十分な材 料を用いて壁を作ると、強さは時間とともに増加す るものの材料がやせて組み立てガタが生じやすくな ることがわかりました。

乾燥の難しいスギですが、上手に乾燥させること によってより優れた構造用材料となるのです。

本研究は、交付金プロジェクト「スギ材の革新的 高速乾燥システムの開発」による成果です。

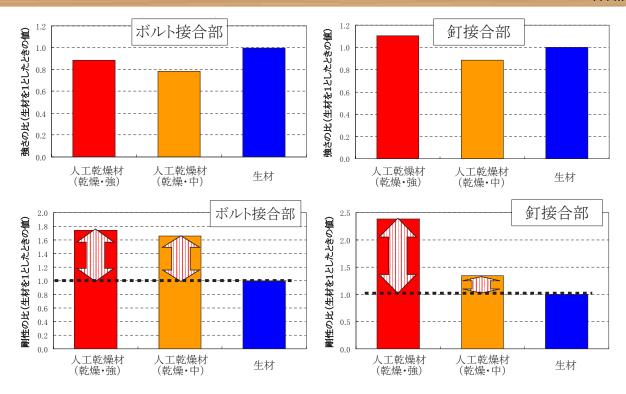


図1 人工乾燥材と生材の強さの比較(左図:ボルト接合部の結果、右図:釘接合部の結果)

(剛性とは、変形のしにくさを表すもので、値が大きいほど変形しにくいことを意味します。) (人工乾燥材を用いた接合部の強さは生材と変わりませんし(上図)、変形しにくいことがわかります(下図)。)

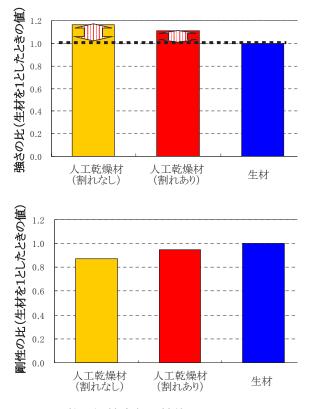


図2 柱-梁接合部の性能

(乾燥材を柱とする接合部は、生材よりも 強くなり(上図)、逆に若干変形しやすく なることがわかります(下図)。)

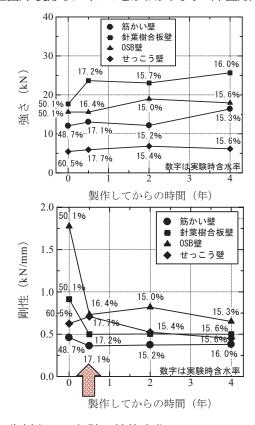


図3 生材を用いた壁の性能変化

(数字は壁を構成する部材の平均含水率 (%))

(生材を用いて製作した壁は、時間の経過と共に耐力が増加して強くなりますが(上図)、壁の種類にかかわらず剛性は半年で急激に低下し、変形しやすくなることがわかります(下図)。)