論 文 (Original article)

東日本太平洋沖地震大津波が三陸沿岸地域における スギ林針葉の赤褐変化に及ぼした影響

小野 賢二 1)*、平井 敬三 1),2)

Needle discoloration of Japanese cedar (*Cryptomeria japonica*) along the Pacific coastline of Sanriku, Japan, after the Heisei Sanriku Massive Tsunami with the 2011 off the Pacific coast of Tohoku Earthquake

Kenji ONO^{1)*} and Keizo HIRAI^{1),2)}

Abstract

The Heisei Sanriku Massive Tsunami caused by the earthquake in 2011 ruined many forests along the Tohoku Pacific coast. Cedar (Cryptomeria japonica) forests along this remote coastline began to show damage over time, although they seemed to be healthy and thriving immediately after the tsunami. Specifically, their needles became discolored turning from green to reddish-brown starting in mid-May 2011, probably being caused by sea salt injury resulting from seawater inundation. We explored the distribution of the salt injury in cedar forests along the Sanriku coastline and tried to determine the cause of the damage. The extent of cedar needle discoloration seen in the forests was fundamentally consistent with seawater-inundated areas. In the seawater-inundated cedar forest at Kamaishi-City, Iwate-Pref., the tsunami wave carried in and deposited sea sand onto the forest floor and washed away the A₀ layers and surface soils. Seawater inundation caused incremental changes to the pH(H₂O), EC, and concentration of water-soluble and exchangeable Na⁺ in these forest soils. We assumed the dissolution of superfluous Na⁺ in soil water and the related changes in soil chemistry caused the sea salt injury seen in planted trees in these seawater-inundated cedar forests. In general, the causes of salt injury to soil were excessive absorption and accumulation of Na⁺ in the plant body, competitive inhibition of nutrient uptake by Na⁺, and a decrease in the suction potential caused by low osmotic pressure between the soil matrix and plant roots. Consequently, cedar needles in seawater-inundated forests turned brownish after fresh needle expansion. It is difficult to remove sea salt from these forested lands because most Japanese forests grow in steeply sloped mountainous areas. However, high levels of precipitation in Japan may remove sea salt from tsunamicreated saline soils. Therefore, reforestation efforts in seawater-inundated forests along the Sanriku coastal areas will require continued soil chemistry monitoring.

Key words : The Heisei Sanriku Massive Tsunami, saline soil, salt injury, seawater inundation, degree of cation saturation

要旨

2011年3月の東日本大震災では太平洋沿岸に大津波が襲来し沿岸の海岸林をほぼ壊滅させた。 また震災直後に健全だった津波浸水後背地スギ林では時間経過と共に各地で針葉が赤褐化する塩害 に起因すると考えられる現象が拡大した。ここでは三陸沿岸津波浸水後背地のスギ針葉変色の実態 を現地踏査により把握しその原因を検討した。三陸沿岸の塩害範囲は津波到達箇所と概ね一致した。 但し針葉の赤褐化は5月上旬まで認めらなかったことから休眠期から生育期に移行した後に変色が 顕在化したとみられた。スギ林の津波到達箇所では土壌への海砂堆積や混入、土壌 pH や EC の上 昇、水溶性および交換性 Na⁺ 濃度の極端な増加が認められた。この結果は、海水が浸水した土壌に は Na⁺ が過剰に付加され、それが塩として集積したことを示唆する。つまり土壌に過剰付加された Na⁺ は、そこに生育する樹木体内への塩分の過剰吸収、過剰塩分による養分の拮抗的吸収阻害、樹 体内外の浸透圧差減少による水ポテンシャルの低下を誘引し、結果としてスギの針葉が変色した可 能性が考えられた。日本の森林の多くは急傾斜地にあり、土壌改良材施用、耕起・砕土・弾丸暗渠 施工などの除塩作業を農地同様に実施することは困難であるが、梅雨や台風等のまとまった降雨に よって除塩を期待できる可能性は残る。津波浸水地における森林再生に向けて森林土壌の継続調査 による土壌化学性の改善状況を把握することが重要となる。

キーワード:平成三陸大津波、塩害土壌、堆砂、海水浸水、塩基飽和度

原稿受付:平成 23 年 11 月 23 日 Received 23 November 2011 原稿受理:平成 24 年 2 月 6 日 Accepted 6 February 2012 1) 杏林総合研究正直北吉正 Tabeley Proceeding Conternational France Products Prod

¹⁾ 森林総合研究所東北支所 Tohoku Research Center, Forestry and Forest Products Research Institute (FFPRI)

現所属:森林総合研究所立地環境研究領域 Department of Forest Site Environment, Forestry and Forest Products Research Institute (FFPRI)
* 森林総合研究所東北支所 〒 020-0123 岩手県盛岡市下厨川字鍋屋敷 92-25 Tohoku Research Center, Forestry and Forest Products Research Institute (FFPRI), 92-25 Nabeyashiki, Shimo-Kuriyagawa, Morioka, Iwate, 020-0123 JAPAN.

1. はじめに

2011 年 3 月 11 日 14 時 46 分に宮城県太平洋沖を震源 として発生した東日本太平洋沖地震では、大規模な津波 が東北地方の太平洋沿岸に襲来し、未曾有の大災害を 引き起こした。三陸海岸は青森県南東部から宮城県北東 部にわたる、総延長 600 km 余のリアス式海岸である。 複雑に入り組む湾が連なる海岸であるため、津波の最大 遡上高は 40.5m (岩手県宮古市重茂半島)にも及んだ(全 国津波合同調査チーム, 2011)。大津波の発生は防潮・ 防砂・防風林としての機能を持つ海岸前縁部のアカマツ・ クロマツ海岸林をはじめ、東日本太平洋沿岸の森林に壊 滅的な被害をもたらした。この地震による我が国森林の 被害面積は、2011 年 10 月 17 日現在、1,065 ha にも及 んだ(林野庁, 2011)。

10 m 超の大津波が広範囲に押し寄せた三陸沿岸地域 では、海岸前縁部における海岸林の直接的な被害に加 え、その後背地に位置する森林でも、時間経過に伴って 針葉変色や萎凋が現れた(中村,2011)。すなわち、極 端な樹体の損傷を受けずに、津波直後の3~4月にお いて外見上健全とみられたスギやアカマツ、クロマツ(両 種を区別しない場合、あわせてマツと略す)の生立木に おいても、休眠期から生育期への移行に伴い、その針葉 が赤褐色化する現象が沿岸各地で確認された(例えば、 宮城県南三陸町のスギ林(河北新報社,2011)、青森県 八戸市のマツ林(中村,2011)など)。これらの被災林 では、土壌が海水によって冠水し、さらにその地表面に 海砂が堆積しており、大津波がもたらした塩害に起因し た現象であると推察される。

津波による土壌塩害の実態や原因については、農地を 対象に研究がなされ、古くからその知見は蓄積されてき た(例えば、米田,1958a, b, cなど)。土壌への海水浸 水や地表面への海砂の堆積は、生育する樹木への過剰 な塩分吸収・集積、塩分の拮抗作用による養分吸収阻 害、植物内外の浸透圧差減少による水ポテンシャルの低 下(米田,1958a, b, c;農林水産省農村振興局,2011) を引き起こすとされている。つまり、これらの要因は津 波被災林において樹木の萎凋や生育不良、ひいては枯 死の原因となり、今後も津波による塩害被災林の拡大が 懸念される。

本論では、三陸沿岸地域における森林を踏査した結果 を検討し、津波によって被害を受けた土壌や樹木の塩害 の実態を報告する。海岸林を構成する最も主要なマツ林 の津波被害調査は、震災直後から多くの実地調査が行わ れ、既に報告されている(例えば、中村,2011;星野, 2011;坂本,2011)。したがって、マツ林の被害実態の 報告はこれらの既往の調査に委ねることとし、本論では、 津波浸水後背地の主な構成種であるスギ林における塩 害実態に焦点を絞り、津波による海水浸水や海砂の堆積 が土壌の化学的性質にもたらした影響について検討し、 針葉の赤褐変化現象との関連を考察することとした。

図 1. 本研究における調査箇所および調査日時

Figure 1. Studying sites and dates in the present study.

地図は http://www.8toch.net/gappei/map.cgi より借用。白抜きは土壌採取箇所、塗り潰しは目視による林分状況の観察のみ。

2. 調査地および方法

1) 踏査地域および現地調査法の概要

津波浸水後背地のスギ林に生じた塩害実態は、三陸 沿岸を走る国道45号線沿いを中心として、目視によ って針葉の赤褐変化の有無を確認した。調査日時およ び調査地点はFig. 1に示した。

2011年6月以降の調査時において、同一斜面上で 針葉の赤褐変化が確認された林分と確認されなかった 林分が現存した釜石市および南三陸町のスギ林におい て、ライントランセクトを設定し(Fig. 2)、2 m毎 に土壌表層部の状態(土性・土色・下層植生・被覆度・ 堆砂の有無・津波到達の有無)を観察し、スギ針葉変 色の発生との関連を検討した。さらに各調査地点にお いて表層土壌(0-10 cm)およびその上に堆積した海 砂(堆砂)を採取して持ち帰り、化学性の分析に供した。

2) 土壌の化学性の分析

土壌の pH(H₂O) は採取直後の新鮮な堆砂および表 層土壌を用いて、風乾前に乾土 10 g に対して水 25 ml の割合になるように脱イオン水を加えて懸濁し、ガラ

ス電極法により測定した。

水溶性陽イオン濃度に関して、採取直後の新鮮な堆 砂および表層土壌に対して、風乾前に乾土 10gに対 して水 25 ml となるよう脱イオン水を加えて一時間振 盪し、その懸濁液を吸引濾過して水抽出液を得、得ら れた水抽出液における陽イオン濃度を、原子吸光法に よって測定した。

土壌懸濁液の電気伝導度(Electrical Conductivity, 以下、「EC」という)は、風乾試料を2mmメッシュ の円孔篩を用いて篩別し、1:5水浸出法に準じて測定 した。さらに、1M酢酸アンモニウム吸引抽出(peech 法)による陽イオン交換容量(Cation Exchangable Capacity,以下、「CEC」という)をインドフェノール 青法で、交換性陽イオン量を原子吸光法によって分析 した。

3. 結果

1) 三陸沿岸地域スギ林における塩害状況

三陸沿岸地域の現地調査では、塩害によるとみられるスギ針葉の変色発生範囲は、基本的には津波到達

陸前高田市

大槌町

写真1.塩害によるスギ針葉の赤褐色化現象の進行

Photo 1. Japanese cedar (Cryptomeria japonica) forests changed needle color being due to the sea salt injury with the Heisei Sanriku Massive Tsunami.

35

図 2. 調査地の遠景とライントランセクト配置 Figure 2. Distant views of the study sites and line transect arrangement 箇所と一致していた。ただし、スギ針葉の赤褐変化は 2011年4月には認められなかった(Photo 1)ことから、 例年休眠期から生育期へ移行する2011年5月以降に 顕在化したと考えられる。針葉が変色したスギは、当 年針葉が伸長していない個体が大勢を占めていたが、 一部には当年針葉が伸長し、それらが赤褐変化した個 体も認められた(Photo 2)。

2) 津波到達、海水浸水を受けたスギ林の林床や土壌 の状態

大槌湾に面した釜石市鵜住居町における津波浸水後 背地スギ林では、大津波の塩害によるとみられるスギ 針葉の赤褐変化が顕在化した林分と健全林分が同一斜 面上に存在した。そこで、2011年6月23日に、斜 面方向にライントランセクトを設定し、2m毎に土壌 断面表層を観察し、津波到達の有無によるスギ針葉の 赤褐変化の状況、林床や土壌の状態の違いを比較し た(Table 1)。本調査地の土壌型は適潤性褐色森林土 (B_D)(土じょう部, 1976)であり、表層地質は固結堆 積物および古生代の泥岩であった(経済企画庁総合開 発局,1975)。本調査林分における林内への津波到達 の有無は林床の状態から目視で容易に判断できた。林 内の津波到達箇所では林床の下層植生やA₀層の剥離、 表層土壌洗掘による樹木細根の表出、海砂の堆積、表 層土壌への海砂混入が認められた(Photos 3, 4)。ま た津波到達箇所ではスギ針葉の赤褐色変化が認められ た。斜面上部の津波未到達箇所の立木は針葉の変色は なく、健全であった(Table 1)。津波到達、海水浸水 を受けた宮城県南三陸町のスギ人工林においても、釜 石市と同様、スギ針葉の赤褐変化や下層植生やA₀層 の剥離、表層土壌洗掘による樹木細根の表出、海砂の 堆積、表層土壌への海砂混入など、同様事象が観察さ れた(図表省略)。

2011年6月に釜石市のスギ人工林において採取した 未風乾新鮮表層土壌のpH(H₂O)は、津波未到達箇 所で4.7~5.3であったが、津波が到達した箇所で堆 砂がみられない場所では 5.3 ~ 5.7、堆砂があった場所 では 6.0 ~ 6.2(堆砂層の pH (H₂O) は 6.4 ~ 6.7) に 上昇した(Table 2)。また津波未到達箇所で4~9 mg L⁻¹であった水抽出液中Na⁺濃度は、津波到達箇所で は 26 ~ 56 mg L⁻¹ (堆砂層では 20 ~ 39 mg L⁻¹) と著 しく増加した(Table 2)。道路脇に堆積していた海砂 における水抽出液や、海水の pH (H₂O) および Na⁺ 濃 度はそれぞれ 7.9 と 232 mg L⁻¹ (Table 2)、8.0 と 1.1 g L⁻¹(海水の一般参考値:松井・一国, 1970)であり、 いずれも表層土壌の値より高く、津波到達箇所の土壌 は海水浸水による海水の影響を強く受けていた。一方、 表層土壌の Ca²⁺ と Mg²⁺ 濃度は、津波未到達箇所では それぞれ $4.0 \sim 5.2 \ge 1.5 \sim 1.8 \text{ mg L}^{-1}$ であったが、 到達箇所ではそれぞれ 0.0 ~ 0.3 と 0.3 ~ 0.9 mg L⁻¹ に大きく減少した(Table 2)。K⁺ 濃度は津波到達の有 無にかかわらず、4.7~8.6 mg L⁻¹の範囲にあり、海 水の影響はほとんどみられなかった(Table 2)。

写真 2. スギ針葉の赤褐変化の状況と当年新たに伸長した針葉の変色(岩手県宮古市) Photo 2. Discoloration of young needles in Japanese cedar (Cryptomeria japonica). 拡大したスギの葉の写真(右)中の針葉先端の変色部分が当年新たに伸長した針葉

表1.岩手県釜石市スギ林における、津波による海水浸水の林床や表層土壌への影響と針葉変色の状況 Table 1. The states of forest floor. surface soil, and needle discoloration in the seawater-inundated cedar forest at Kamaishi City, Iwate Prefecture.

採取地点No.	1	2	3	4	5	6	7	8
斜度	34°	42°	38°	48°	38°	30°	30°	0°
津波到達	無	無	有(境界)	有	有	有	有	有
針葉の変色	無	無	無	一部の枝	全枝	全枝	全枝	
表層土壌への海砂混入	無	無	有	有	有	有	有	有
下層植生	有	有	無	無	無	無	無	
A ₀ 層	有	有	有	まれ	まれ	まれ	まれ	
林床の被覆度*	>80%	>80%	70%	10%	10%	10%	5%	
堆砂厚(cm)	0	0	0	0	0	0.5	4	
A層土性	壌土	壌土	壌土	壌土	壌土	壌土	壌土	砂
土色								
堆砂層						7.5Y2/1	7.5Y3/2	7.5Y3/1
A層	7.5YR2/1	7.5YR2/1	7.5YR2/2	7.5YR2/1	10YR1.7/1	10YR2/1	10YR2/1	

林床の被覆度*: 目視による林床植生および堆積有機物を合わせた被覆度

表 2. 各調査地点における土壌懸濁液の pH(H2O)、および水抽出液中の陽イオン濃度

point of seawater-inundated cedar forest.									
採取地点No.	1	2	3	4	5	6	7	8	海水'
津波到達	無	無	有(境界)	有	有	有	有	有	
pH(H ₂ O)									8
堆砂層						6.37	6.68	7.94	
A層	4.74	5.25	5.28	5.70	5.44	5.95	6.21		
Ca (mg L ⁻¹ 抽出溶液)									40
堆砂層						1.1	0.2	25.1	
A層	5.2	4.0	0.3	0.0	0.1	0.1	0.1		
Mg(mg L ⁻¹ 抽出溶液)									127
堆砂層						1.7	0.5	16.1	
A層	1.8	1.5	0.9	0.3	0.6	0.6	0.5		
Na (mg L ⁻¹ 抽出溶液)									1056
堆砂層						38.9	19.7	232.3	
A層	4.2	8.8	33.3	26.0	43.4	55.7	31.2		
K (mg L ⁻¹ 抽出溶液)									38
堆砂層						25.5	7.0	33.4	

Table 2. The values of pH(H₂O) and the concentrations of water-soluble cations in the soil suspension of each sampling

A層 6.7 7.3 8.6 国雅巳 般地球科学 岩波書店 1970より) 般参考值 (松井義人· 訳 X イスン

6.6

6.0

4.7

写真3.津波が到達し、海水が浸水したスギ林林床の状況 (岩手県釜石市) Photo 3. Forest conditions after seawater inundation with the Heisei Sanriku Massive Tsunami.

54

Needle discoloration of Japanese cedar (*Cryptomeria japonica*) along the Pacific coastline of Sanriku, Japan, after the Heisei Sanriku Massive Tsunami with the 2011 off the Pacific coast of Tohoku Earthquake

No.3

No.7

土壤断面

林床

土壤断面

写真 4. 津波到達箇所(境界)(No.3)および津波到達箇所(No.7)の表層土壌および林床の様子 Photo 4. Conditions of forest floor and soil surface at the sampling points (No. 3 & 7) with seawater inundation.

4) 表層土壌の EC、CEC および交換性陽イオンの濃度

表層土壌の 1:5 水浸出法による土壌懸濁液の EC は、 津波未到達箇所で 0.14 ~ 0.16 dS m⁻¹, 津波が到達した 箇所で堆砂無しの箇所で 0.10 ~ 0.19、堆砂有りの箇 所で 0.25 ~ 0.33 dS m⁻¹(堆砂層では 0.22 ~ 0.93 dS m⁻¹) であった(Table 3)。道路脇に堆積していた海砂 の EC は 0.56 dS m⁻¹ で、林床の堆砂や表層土壌に比べ、 著しく高い値を示した(Table 3)。

peech 法に準じて求めた表層土壌の交換性 Na⁺ 濃度 は、津波未到達箇所では $0.1 \sim 0.4 \text{ cmol}_{\text{c}} \text{ kg}^{-1}$ 乾土で あったが、津波到達箇所では $1.7 \sim 6.8 \text{ cmol}_{\text{c}} \text{ kg}^{-1}$ 乾 土 (斜面下部の堆砂は 1.7 ~ 3.4 cmol_c kg⁻¹ 乾土) と 未到達箇所の 4 ~ 60 倍超の大きな値を示した(Table 3)。一方で、表層土壌の CEC、交換性 Ca²⁺, Mg²⁺ お よび K⁺ 濃度はそれぞれ 44 ~ 64、1.2 ~ 9.7、1.4 ~ 6.5 cmol_c kg⁻¹ 乾土であり、地点間で変動が認められた ものの、津波到達の有無による大きな差違は認められ なかった。また、津波未到達箇所における塩基飽和度 は 18 ~ 23% であり、その 6 ~ 7 割は交換性 Ca²⁺ に 起因するものであった(Table 3)。一方、津波到達箇 所の塩基飽和度は堆砂がなかった箇所で 11 ~ 16% と 低めの値を示したのに対し、斜面下部の堆砂があった Table 2. The values of EC, CEC, exchangable cation concentration, and cation saturation percentage in each sampling point of seawater-inundated cedar forest.

採取地点No.	1	2	3	4	5	6	7	8
津波到達	無	無	有(境界)	有	有	有	有	有
EC (dS m ⁻¹)*								
堆砂層						0.22	0.93	0.56
A層	0.14	0.16	0.15	0.10	0.19	0.33	0.25	
塩基交換容量 (cmol。ka	a ⁻¹ 乾土)**							
	, ,					23	12	7
0-10 cm	52	64	48	45	50	44	55	
交換性Ca ²⁺ 濃度 (cmol	.kq ⁻¹ 乾土)**							
堆砂層	U U U					5.1	2.6	4.8
0-10 cm	7.2	9.7	3.0	1.2	2.1	1.6	6.8	
交換性Mg ²⁺ 濃度 (cmol _c	kg⁻¹乾土)**							
堆砂層						5.1	2.5	3.0
0-10 cm	1.9	3.8	1.8	1.4	2.2	2.2	6.5	
交換性Na [⁺] 濃度 (cmol _c l	<g⁻¹乾土)**< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td></g⁻¹乾土)**<>							
堆砂層						1.7	1.0	3.4
0-10 cm	0.1	0.4	1.7	1.8	2.8	3.4	6.8	
交換性K [⁺] 濃度 (cmol。kg	┓ ⁻¹ 乾土)**							
堆砂層						0.67	0.40	0.55
0-10 cm	0.32	0.53	0.46	0.47	0.55	0.59	0.65	
交換性Ca ²⁺ 飽和度(%)(′=交換性Ca ²⁺	CEC×1	00)					
堆砂層			/			23	22	68
0-10 cm	13.9	15.2	6.3	2.8	4.3	3.5	13	
交換性Mq ²⁺ 飽和度(%)(⊂交換性Mo ²⁺	CEC×10	00)					
堆砂層	, a j		,			22	21	43
0-10 cm	3.7	5.9	3.7	3.2	4.5	5.0	12	
交換性Na [⁺] 飽和度(%) (=	=交換性Na ⁺ /C	EC×100)					
堆砂層						7.6	9	48
0-10 cm	0.2	0.7	3.7	4.0	5.6	7.6	12	
交換性K [⁺] 飽和度(%) (=:	交換性K ⁺ /CE(C×100)						
堆砂層						3.0	3.4	7.8
0-10 cm	0.6	0.8	1.0	1.1	1.1	1.3	1.2	
全塩基飽和度(%)(=交	換性Ca ²⁺ ,Mg ²	²⁺, Na⁺, K	(⁺ /CEC)					
堆砂層						55	55	167
0-10 cm	18	23	15	11	15	17	38	
*1:5水浸出法								

**peech法

箇所では 17 ~ 38% (堆砂は 69 ~ 209%) と高めの値 を示した (Table 3)。津波到達箇所の土壌における塩 基飽和度は交換性 Ca^{2+} と交換性 Na^+ に起因しており (ともに 2 ~ 4 割程度の寄与率)、表層土壌の化学性は 津波到達による海水起源の Na^+ の影響を強く受けたこ とが明らかとなった。

4. 考察

1) 浸水後背地におけるスギ林土壌の化学性への津波 の影響 今回の大津波のような一時的な海水の侵入による塩 害は、土壌への塩類過多に起因する直接的な生育障害 に基づくと言われている(米田,1958a)。本研究にお ける三陸沿岸地域津波浸水後背地の現地踏査でも、塩 害によるとみられるスギ針葉赤褐変化の範囲は、津波 到達箇所との一致が確認できた。加えて、同一斜面に おいても、スギ針葉の赤褐色化の発生は津波が到達し た箇所でのみ認められ、津波未到達箇所の生立木の針 葉は変色しておらず、外見上健全であった。

また、津波が到達した岩手県釜石市におけるスギ林

土壌の化学性は、津波到達、海水浸水の影響が強く認 められた。すなわち、津波到達により土壌の pH (H₂O) やEC、水溶性および交換性 Na⁺ 濃度の上昇が認めら れた。こうした傾向は仙台南東部における津波被災農 地(水田)の表層土壌に対する調査報告と概ね一致し ていた(南條, 2011)。日本の森林土壌では、交換性 塩基の含量は一般に Ca²⁺ > Mg²⁺ > K⁺ > Na⁺の順であ るといわれている(河田、1989)が、津波到達、海水 浸水による過剰な Na⁺の付加によりそのバランスは崩 れていた。水溶性および交換性 Ca²⁺ 濃度は津波到達に よって大きく減少した(Tables 2, 3)。これは、津波が 到達し、海水が地表面から地中へ浸水したことで土壌 中に多量に供給された遊離 Na⁺ により、土壌中の Ca²⁺ と交換、遊離され、土壌から洗脱したことに起因した と考えられる。Mg²⁺および K⁺に関して水溶性、交換 性イオン濃度は、津波到達の有無による変化は認めら れなかった。

2) 津波浸水後背地における塩害の原因

土壌懸濁液の EC はその測定が容易であること、溶 液中の溶存イオンの総濃度に比例すること、作物の吸 水に直接的に影響する浸透圧と比例すること、などか ら農地土壌を対象として塩害が起こりうる限界指標に よく用いられている(米田, 1958 a, b, c; 熊本県農 政部,1999;岩手県農業研究センター震災復旧・復興 支援プロジェクトチーム・県北農業研究所(軽米町), 2011;中田, 2011; JA 全農, 2011)。その限界指標値 は、土壌懸濁液の EC で、0.7 dS m⁻¹(熊本県農政部 ,1999)、0.6 dS m⁻¹(岩手県農業研究センター震災復 旧・復興支援プロジェクトチーム・県北農業研究所(軽 米町), 2011), 0.5 dS m⁻¹ (中田, 2011)、 0.3 ~ 0.6 dS m⁻¹ (JA 全農, 2011) とされている。本研究にお ける岩手県釜石市のスギ林では、津波到達箇所の土壌 の EC は未到達箇所に比べ、上昇は認められたものの、 最大でも斜面最下部の表層土壌において 0.3 dS m⁻¹で あり(Table 2)、農地土壌の指標では、作物の生育上 問題のない値を示した。樹木の耐塩性の面から考慮す ると、スギは土壌中の塩分に対して極めて弱いとされ ている(本間,1976)ことから、農地土壌の基準で は塩分濃度としては作物の生育上問題の無いレベルで も、三陸沿岸の津波が到達したスギ林では針葉の変色 という形で塩害が顕在化したものと考えられる。

土壌における交換性塩基の状態を表す場合に、CEC に対する塩基合計量、あるいはそれぞれの塩基成分の 飽和度によって指標することが多い。一般には、交換 性塩基の中で最も主要な塩基である $Ca^{2+} \ge Mg^{2+}$ を用 いてその飽和度で指標する場合が多く(河田,1989)、 日本の森林土壌における Ca^{2+} 飽和度は tr. ~ 60%、 Mg^{2+} 飽和度は tr. ~ 20% 程度である(河田・小島, 1976)。本研究の調査地、岩手県釜石市スギ林におけ る Ca²⁺ と Mg²⁺ 飽和度は津波到達の有無に関わらずこ の範囲であった(Table 3)。一方、森林土壌中では一 般に低含量である交換性 Na⁺ 濃度は、津波到達、海水 浸水に伴う土壌への Na⁺ 付加により 5 ~ 60 倍強に上 昇した(Table 3)。この結果は土壌水の塩濃度に直接 的に関係する水溶性 Na⁺ 濃度にも現れており、津波到 達箇所の水溶性 Na⁺ 濃度は津波未到達箇所の 4 ~ 60 倍強の値を示していた。

本研究は、津波到達、海水浸水により付加された Na⁺が土壌水へ過剰に溶解したために、樹木体内への 過剰な塩分吸収・集積、拮抗作用による養分吸収阻害、 植物内外の浸透圧差減少による水ポテンシャルの低下 などを誘引し(米田, 1958a, b, c; 農林水産省農村振 興局,2011)、結果としてそこに生育するスギの針葉 を赤褐変化させた可能性を示唆した。排水経路の確保、 土壌改良材の施用、耕起・砕土、弾丸暗渠の施工、湛水・ 排水の繰り返しによる塩分の洗い流しなど、土壌の理 化学的な環境改善に向けた除塩作業を行うことのでき る農地と異なり、森林の多くは急傾斜地であり、塩害 土壌に対して除塩作業を施すことが困難である。しか し、日本においては、梅雨や台風などによる多量の降 雨があるので、こうした降雨降雪による雨水の供給に より、自然に除塩が進む可能性も考えられる。再造林、 再植栽に向け、海水浸水を受けた森林土壌の化学性を 継続的にモニタリングすることで、土壌の化学性の改 善状態を随時把握していくことが重要であると考えら れる。

弔意・謝辞

このたびの地震津波で被災された方々に、心からお 見舞い、お悔やみ申し上げる。本研究の遂行にあたり、 岩手県林業技術センター 成松眞樹氏、蓬田英俊氏に は試験地の設定や森林所有者の確認などにおいて、独 立行政法人森林総合研究所東北支所 澤井恵子氏には 本研究における試料調製、実験補助などにおいて多大 なるご協力を頂いた。また、本報告をまとめるにあた っては、独立行政法人森林総合研究所東北支所 山本 幸一支所長、中北理産学官連携推進調整監、新山馨地 域研究監、中村克典博士に懇切なご助言、ご指導を頂 いた。これらの方々に深く感謝の意を表する。

本研究は、森林総合研究所運営費交付金「G 113:多雪・寒冷地域における森林の健全性維持管 理技術の高度化」の一部、および農林水産省平成23 年度新たな農林水産政策を推進する実用技術開発事業 緊急対応研究課題「津波で被災した海岸林の赤枯れ現 象の実態把握と原因解明」によって行われたものであ る。 引用文献

- 土じょう部 (1976) 林野土壌の分類 (1975), 林試研報, 280, 1-28.
- 本間 啓 (1976) 特殊環境地の植物,遺伝 1976 年 2 月号,41-46.
- 星野大介 (2011) 東北地方太平洋沖地震津波による岩 手県沿岸の海岸林と集落の被害状況,日本森林学 会誌(投稿中).
- 岩手県農業研究センター震災復旧・復興支援プロジェ クトチーム・県北農業研究所(軽米町)(2011)岩 手県における農地の津波被害の実態と対策,2011 年度日本土壌肥料学会東北支部会岩手大会講演要 旨集,17.
- JA 全農 (2011) "東北地方太平洋沖井地震対策:津波に よる塩害対策と水田の土壌管理について",http:// www.zennoh.or.jp/press/topic/PDF/20110329_1. pdf#search=' 塩害 ', (参照 2011-11-22)
- 河北新報社 (2011) 河北新報新聞朝刊記事, 2011 年 6 月 7 日
- 河田 弘(1989) 森林土壤学概論,博友社,399 pp.
- 河田 弘・小島俊郎 (1976) 生態学研究法講座 30:環境 測定法 IV. 一森林土壌-,共立出版株式会社,166 pp.
- 経済企画庁総合開発局(1975)国土調査(岩手県)
- 熊本県農政部 (1999) "平成 11 年 9 月 24 日の台風 18 号による農作物等被害状況及び対策", http:// www.s.affrc.go.jp/docs/pdf/engai_sakumotu_ higai_kumamoto_pref.pdf, (参照 2011-11-22)
- 松井義人・一国雅巳 (1970) メイスン一般地球科学,岩 波書店,402pp.

- 中村克典(2011) 東日本太平洋沖地震津波による被災 マツ林で必要とされるマツ材線虫病対策,森林技 術,835,18-22.
- 中田 均(2011) 海水の浸水被害を受けた水田土壌の 塩類滞留実態と水洗浄による除塩対策のモデル的 解析,富山県農業総合研究センター研究報告,2, 27-37.
- 南條正巳 (2011) "津波をかぶった土の概況", http://www.agri.tohoku.ac.jp/agri-revival/ ocu6bi0000000io-att/a1305266067652.pdf,(参 照 2011-11-22)
- 農林水産省農村振興局 (2011) "農地の除塩マニュア ル",農林水産省 http://www.maff.go.jp/j/press/ nousin/saigai/pdf/110414-01.pdf
- 林野庁 (2011) "東日本大震災に関する情報.林野関 係被害.", http://www.maff.go.jp/j/kanbo/joho/ saigai/rinya_110401_htmi1.html, (参照 2011-11-22)
- 坂本正巳 (2011) "現地調査報告 海岸林被害の視点から.", http://www.rinya.maff.go.jp/j/tisan/tisan/ pdf/siryou4.pdf, (参照 2011-11-22)
- 米田茂男 (1958a) 塩害と土壌 [1], 農業及園芸, 33, 1028-2032.
- 米田茂男(1958b) 塩害と土壌[2], 農業及園芸, 33, 1077-1080.
- 米田茂男(1958c) 塩害と土壌[3], 農業及園芸, 33, 1338-1342.
- 全国津波合同調査チーム(2011) 朝日新聞朝刊記事,2011年5月30日,朝日新聞社.