論 文 (Original article)

東北地方太平洋沖地震による大津波の襲来を受けた 東北太平洋沿岸の海岸マツ林の土壌環境 --津波浸漬7ヶ月後の現地調査から---

小野賢二^{1)*}、中村克典¹⁾、田中永晴²⁾、古澤仁美²⁾、平井敬三²⁾

Soil conditions in coastal pine forests damaged by the Heisei-Sanriku Mega-tsunami following Tohoku Earthquake along the eastern Pacific coast of Japan 2011

Kenji ONO^{1)*}, Katsunori NAKAMURA¹⁾, Nagaharu TANAKA²⁾, Hitomi FURUSAWA²⁾, Keizo HIRAI²⁾

Abstract

We analyzed the seawater-inundated forest soils that are typically dominated by Japanese black and red pine along the eastern Pacific coastline of Japan to evaluate the influence of seawater inundation from the 2011 Heisei-Sanriku Mega-tsunami on coastal forest soils. Seawater inundation from the tsunami brought the following distinctive changes to the morphology of coastal forest soils: 1) complete washout of the litter layer and understory vegetation from forest floors, 2) deposited sea sand on forest floors, and 3) buried A (2A) horizons under sea sand deposits. Also, seawater inundation caused extreme incremental changes to the soil pH(H₂O) in 2A horizons with a large amount of humic substrates. Original values of the soil $pH(H_2O)$ in surface A horizons are primarily acidic because of an abundance of humified organic acids in soil. Thus, soil $pH(H_2O)$ in upper layers is generally acidic and that in lower layers is neutral or basic. Seawater inundation and the sea sand deposits on coastal forest soils carried a large influx of strong base cations, which neutralized organic acids in the humus-rich A horizons and eventually caused an increase in the soil pH(H₂O). Before the Mega-tsunami, surface A horizons contained rhizospheres, which are areas of active symbiosis between mycorrhiza and roots. Therefore, the incremental changes of soil pH(H₂O) in the 2A horizons caused by the tsunami may strongly affect the microenvironments of the rhizospheres and in turn cause severe damages, including needle discoloration, debilitation, droop, and finally death, to broad areas of pine forests along the eastern Pacific coastline. Other measures of soil chemistry (e.g., electric conductivity, exchangeable cation content) were little changed after seawater inundation because coastal forest soils are classified as sand-rich immature soils. In conclusion, reforestation efforts in seawater-inundated forest along the Pacific coastal areas affected by the tsunami will require continued soil chemistry monitoring and rehabilitation.

Key words : Reforestation, coastal pine forest, the Heisei-Sanriku Maga-tsunami, seawater inundation, soil pH(H₂O), rhizosphere

要旨

2011年3月の平成三陸大津波が海岸林土壌に与えた影響を検討するため東北沿岸の津波被災マ ツ林を対象に土壌調査を行った。津波は①リター層と林床植生の流失、②海砂による堆砂層の形 成、③堆砂層下へのA層の埋没等、海岸林土壌に形態的変化をもたらした。海岸林土壌は一般に 腐植や養分に乏しい砂質な未熟土が多いことから、津波によって断面形態は変化していなかったと 推察される。土壌化学性については、埋没A層(2A層)でのpH(H₂O)上昇が顕著に認められた。 電気伝導度や塩基交換容量、交換性塩基含量には明瞭な影響を認めなかった。これは海岸林土壌が 砂質であることによる。一般に海岸林土壌のpH(H₂O)は腐植が多量に混入する土壌表層で低く、 下層で高い。pH≥8の海水浸漬や海水・海塩を含む海砂堆積が海岸林土壌に大量の強い塩基類をも たらし、リター分解に伴って生成される土壌中の有機酸を中和したため、土壌 pH(H₂O)は上昇 したと考えられる。津波被害前に表層土壌であった 2A層にはマツや林床植生の根系が発達し養分 吸収を助ける根圏微生物の活動層が認められた。2A層のpH(H₂O)上昇はマツの根やそれと共生 関係にある菌根菌等の微生物相に著しく影響し、海岸マツ林に針葉変色や衰弱、萎凋、枯損等被害 をもたらしたと考えられた。海岸林再生のため植栽する苗木への津波浸漬の影響を抑えるには、土 壌環境や理化学性を把握した上で生物活性の高いA層の化学性改善を図る必要がある。

キーワード:海岸林再生、マツ林、東日本大震災、土壌 pH、海水浸漬、根圏土壌

原稿受付:平成 24 年 10 月 29 日 Received 29 October 2012 原稿受理:平成 25 年 1 月 22 日 Accepted 22 January 2013 1) 森林総合研究所東北支所 Tohoku Research Center, Forestry and Forest Products Research Institute (FFPRI)

2) 森林総合研究所立地環境研究領域 Department of Forest Site Environment, Forestry and Forest Products Research Institute (FFPRI) * 森林総合研究所東北支所 〒 020-0123 岩手県盛岡市下厨川鍋屋敷 92-25 Tohoku Research Center, Forestry and Forest Products Research Institute (FFPRI), 92-25 Nabeyashiki, Shimo-Kuriyagawa, Morioka, Iwate 020-0123, Japan.

1. はじめに

2011 年 3 月 11 日 14 時 46 分に宮城県太平洋沖を 震源として発生した東北地方太平洋沖地震では、大規 模な津波が東北地方の太平洋沿岸に襲来し、未曾有の 大災害を引き起こした。海岸前線部に生育していたク ロマツやアカマツ(両種を区別しない場合、あわせて マツとする)やその後背地に分布していたスギなど から成る海岸林の多くは、倒伏、根返り、傾斜や折損 など直接的な被害を受けた(坂本 2011, 2012, 中村ら 2012, 星野 2012)。この津波による青森、岩手、宮城、 福島、茨城、千葉の 6 県の海岸林の浸水被害は、約 3,660ha にも及んだ(東日本大震災に係る海岸防災林 の再生に関する検討会 2012)。

一方で、津波による極端な樹体の損傷を受けず見か け上は健全な海岸林が震災直後から2011年6月頃ま で沿岸の各地に存在した(中村ら2012)。しかし、こ うした海岸林でも、時間経過に伴って針葉の変色・萎 凋、樹勢衰退、さらには枯死が見られるようになっ た(河北新報社2011,中村ら2012)。これらの海岸林 では土壌が津波襲来の際には海水によって冠水し、さ らにその地表面には大量の海砂が堆積していた(中村 2011,中村ら2012)。したがって、大津波がもたらし た塩分が針葉変色・萎凋、樹勢衰退・枯死などの現象 を引き起こした可能性がある。

高潮や潮風害などによって農地に生じる土壌塩害に ついては、古くから多くの研究がなされてきた(米田 1958a, b, c, 間藤 1989, 1997)。土壌への海水浸水やそ の地表面への海砂の堆積は、そこに生育する樹体内へ の過剰な塩分吸収・集積、塩分の拮抗作用による養分 吸収阻害、植物内外の浸透圧差減少による吸水能の低 下(米田 1958a, b, c, 農林水産省農村振興局 2011)を 引き起こすとされる。津波被災林においてもこれらの 要因は樹木の萎凋や生育不良、枯死の原因となる。ま た津波浸水地を対象として再造林をする際には苗木の 活着や生育不良の原因となる。したがって、海岸林の 再生に向け、津波被災後の土壌環境を把握することが 必要である。

本論では、東北沿岸地域の海岸林で土壌調査した結 果を解析し、津波被災7ヶ月後の海岸林土壌の実態を 明らかにする。津波浸水後背地に位置するスギ林に関 しては、すでに報告済みである(小野・平井 2012)。 本論では海岸前線部に位置し、主要な海岸林であるマ ツ林に焦点を絞って議論する。津波の被害を受けてい ない林分の土壌化学性については、これまでの研究成 果(農林水産技術会議事務局 1987, 田中ら 1992a, b) を参考に、津波侵入・海水浸水の有無による違いを比 較、検討する際のリファレンスデータとした。一部の 未測定項目については今回、保存土壌試料を利用して 新たに分析を行った。

2. 調査地および方法

1) 調査地の概要および現地調査項目

津波を受けた海岸マツ林における土壌の状況を把握 するため、青森県八戸市市川(北緯40°35.0'、東経 141°28.2')、宮城県東松島市浜市(北緯38°23.0'、 東経141°11.0')、同亘理町吉田浜(北緯37°59.9'、 東経140°54.8')の海岸前線部とその後背地、または 後背地の前縁とその背後に調査地を設定した(図1)。 いずれの試験地も、土壌は未熟土であり(土じょう部 1976)、表層地質は砂を中心とした未固結堆積物(経 済企画庁総合開発局 1970, 1972) である。また、試験 地すべてにおいて、東日本大震災では津波が浸入し、 海水によって浸漬された。被災7ヶ月後の2011年10 月に、各試験地で樹木の衰弱程度や津波到達の有無、 土壌表層の土性、土色、下層植生、A₀層の有無、堆砂 を調査した。さらに、各試験地のそれぞれ3箇所で土 壌断面調査と層位ごとに土壌試料の採取を行い、化学 性の分析に供した。

2) 土壌の化学性の分析

土壌化学性の分析は国有林林野土壌調査方法書(林野庁・林業試験場 1955)に準じて行った。採取した 土壌試料は風乾し、風乾試料を2mmメッシュの円孔 篩を用いて篩別した後、分析に供した。分析項目は、 pH(H₂O)、電気伝導度(Electrical Conductivity,以下、 「EC」という)、交換性塩基含量、塩基交換容量(Cation Exchangable Capacity,以下、「CEC」という)、塩基 飽和度である。土壌のpH(H₂O)は、乾土 10gに対し て水 25 mlの割合で脱イオン水に懸濁し、ガラス電極 法により測定した。土壌懸濁液のECは1:5 水浸出法 に準じて測定した。CECと交換性塩基含量はpeech 法 により抽出し、それぞれ比色法(インドフェノール青 法)および原子吸光法(株式会社日立ハイテクノロジ ーズ Z-5310)で分析した。

3) リファレンスデータ

飛砂・潮風防止、高潮・津波被害低減などの環境保 全機能の維持強化を目指した海岸林の管理方法の策定 のために、1978年から1982年にかけて環境庁一括計 上国立機関公害防止等試験研究課題「環境変化に対応 した海岸林の環境保全機能の維持強化技術の確立に関 する研究」が行われ、海岸林の土壌断面形態および化 学性についての調査結果が報告されている(農林水産 技術会議事務局 1987,田中ら 1992a, b)。本研究では、 調査報告書および当時の野帳、分析ノートから必要な 分析値を記述し、1987年および 1992年当時に未分析 であった項目については、森林総合研究所立地環境研 究領域に保存されている土壌試料を分析して求めた。 この研究課題で対象とされた茨城県東海村村松(北緯 36°26.9'、東経 140°36.3')および同北茨城市大津港

図 1. 本研究における調査地位置と各試験地の概略図 Figure 1. Studying sites in the present study. 南(北緯36°48.6'、東経140°45.9')の海岸林土壌 のデータをリファレンスデータとして利用した。

3. 結果

1) 津波被災後のマツ海岸林土壌の断面形態

前線部、後背地に関わらず、今回調査の全試験地で、 津波が浸入し、海水浸漬の被害を受けた。試験地内に は津波による倒伏、根返り、折損を免れたマツが残存 していたが、被災7ヶ月後の2011年10月時点では、 その多くで針葉が褐色化しており、樹木の萎凋・衰弱 が認められた (Photo 1)。場所によってはほぼ全個体 が枯死した試験地もあった (Table 1)。これらの試験 地の林床には、津波によって運ばれた海砂が堆積して いた (Table 1, Photo 2)。宮城県亘理町吉田浜および 青森県八戸市市川では、前線部、後背地問わず 30 cm 以上の非常に厚い堆砂が認められた (Photo 2)。津波 発生から7ヶ月余りが経過していたこともあり、林 床には海岸性植物の侵入が認められ、下層植生が回復 していた (Table 1, Photo 3)。さらに針葉の赤褐化の 後、枯死して脱落したマツ落葉などの堆積により0~

写真 1. 津波浸漬を受けた海岸マツ林(宮城県東松島市浜市 2011 年 10 月撮影) 各地で、針葉の変色、樹勢の衰弱、多数の結実などが確認された。

Photo 1. Coastal pine forests affected by the Heisei-Sanriku Mega-tsunami following Tohoku Earthquake along the eastern Pacific coast of Japan 2011.

Soil conditions in coastal pine forests damaged by the Heisei-Sanriku Mega-tsunami following Tohoku Earthquake along the eastern Pacific coast of Japan 2011

写真 2. 津波浸漬を受けた海岸マツ林の土壌(宮城県亘理町吉田浜 2011 年 10 月撮影) Photo 2. Soil profiles of the coastal pine forests affected by the Heisei-Sanriku Mega-tsunami following Tohoku Earthquake along the eastern Pacific coast of Japan 2011

写真 3. 津波浸漬を受けた海岸マツ林林床の様子(宮城県亘理町吉田浜 2011 年 10 月撮影)リターが堆積し、下層 植生の回復が始まっていた。

Photo 3. Forest floor of the coastal pine forests affected by the Heisei-Sanriku Mega-tsunami following Tohoku Earthquake along the eastern Pacific coast of Japan 2011.

3 cm 厚程度の A_0 層 (L 層)の形成が認められた (Table 1, Photos 2, 3)。土壌断面調査を行ったところ、いず れの試験地でも堆砂層の下には 3 ~ 9cm 厚の赤黒色 (2.5YR2/1) ~赤褐灰色 (2.5YR3/1) ~極暗赤褐色 (2.5YR2/2~3)の埋没 A 層 (2A 層)が認められた。 2A 層内にはマツ細根や津波被災前に生育していた下 層植生の根系と、それらに由来する腐植の混入が認め られた (Photo 2)。2A 層の下には、すぐに砂質の 2C 層が存在した。宮城県亘理町吉田浜の試験地では 65 cm の深度に地下水面が確認され、被災前に発達して いたマツの根系が水没していた (Photo 2)。

2) 津波被災マツ林土壌の化学性

土壌化学性は各試験地の前線部、後背地による違い は認められなかった(Table 1)。未風乾新鮮土壌の pH (H₂O) は表層の堆砂層で 7.0 ~ 9.6 と、中性~アルカ リ性を示した。2A 層の pH (H₂O) は 6.6 ~ 7.7、そ の下の 2C 層は 6.9~8.1 と、中性~弱アルカリ性で、 堆砂層よりやや低い値であった(Table 1)。表層土壌 の EC は全般に高く、2A 層で 1.5 ~ 6.9 dS m⁻¹ で、堆 砂層と 2C 層は $0.4 \sim 2.4 \text{ dS m}^{-1}$ であった (Table 1)。 各層の CEC は全般に低く、堆砂層で 1.5 ~ 12.0、2A 層で16.1~26.7、2C層で3.1~7.6 cmol_c kg⁻¹の範 囲であった。これは、どの試験地も土性が砂土(S) または壌質砂土(LS)であり、腐植が乏しい未熟土 であるためと考えられた。ただし、交換性塩基含量に 関しては、その種類によってその値に差が見られ、交 換性 Ca²⁺は、堆砂層で 0.6 ~ 9.7、2A 層で 1.6 ~ 7.2 $cmol_c kg^{-1}$ とやや高く、2C 層では 0.2 ~ 1.8 cmol_c kg^{-1} と低い傾向を示した(Table 1)。交換性 Mg²⁺ と Na⁺ は、 2A 層でそれぞれ 2.9 ~ 5.6、 $1.5 \sim 9.2 \text{ cmol}_{s} \text{ kg}^{-1}$ と 高く、次いで堆砂層でそれぞれ 1.2 ~ 3.5、0.3 ~ 2.5 cmol_c kg⁻¹であり、C 層はともに低くそれぞれ 0.4~ 0.9、0.5~1.9 cmol_c kg⁻¹ であった(Table 1)。交換性 K⁺含量は全層で大きな差違はなく、0.2 ~ 2.2 cmol_c kg⁻¹の範囲にあった(Table 1)。塩基飽和度は CEC が 低いため全般に高く、試験地の場所や層位の違いによ らず、宮城県亘理町吉田浜や青森県八戸市市川の堆砂 層などでは成分によって100%を超えるものが認めら れた(Table 1)。したがって、全塩基飽和度はいずれ も 20%以上であった (Table 1)。

3) 津波未被災海岸林の立地環境とその土壌化学性

津波未被災海岸林の立地環境とその土壌化学性の結 果を Table 2 にまとめた。この調査地の主な構成樹種 はクロマツ(樹齢 11 年~ 67 年生)であったが、植生 のない海岸前線部(調査地 1)や砂丘底地で地下水面 の高い地点(調査地 10)、樹齢 125 年生のモミが分布 する地点(調査地 海 4)も存在した(Table 2)。土 壌は全層が砂土(S)または壌質砂土(LS)の C 層か、

あるいは C 層上に A 層、H 層が存在する未熟土であ り、それらの層位は主として砂の粒径の違いと根の侵 入程度、土色によって区分された。土壌構造の発達は 認められない。A 層は腐植の混入が認められたが、層 位の発達程度はあまり明瞭ではなかった。これらの調 査地の土壌の pH (H₂O) は、H 層および A 層では 3.7 ~ 6.3 で酸性を示し、A 層の下にある AB 層、B 層、 BC 層、C 層では 4.4 ~ 9.0 と酸性~アルカリ性であっ た(Table 2)。汀線に近い海岸前線部の調査地1は全 層でアルカリ性を示し、海水の影響を強く受けている と考えられる。ECは全般に高く、多くの層位で1dS m⁻¹以上の値を示した(Table 2)。さらに海岸前線部 に位置した調査地1では C 層で 40 dS m⁻¹ 以上の高い 値を示し、また、HA 層でも 120 (調査地 海7)、51 dS m⁻¹(同 海 2) と極端に高い土壌も一部確認され た (Table 2)。CEC は全般的に 10 cmol_c kg⁻¹ 以下で低 く、H 層や HA 層でのみ 20 cmol_c kg⁻¹ を超えた土壌が 一部確認された(Table 2)。交換性 Ca²⁺、Mg²⁺、Na⁺、 K⁺含量は多くの土壌で1 cmol_c kg⁻¹以下で全般に低か った。調査地 海2、3、7のH層やHA層、海岸前 線部(調査地1)の交換性 Ca²⁺、Mg²⁺、Na⁺含量は5 cmol_c kg⁻¹以上の高い値を示していた。これは CEC と 同様な傾向であった(Table 2)。以上の結果を反映し て Ca²⁺、 Mg²⁺、 Na⁺、 K⁺ の各飽和度は 10% を超える 土壌が多く、全塩基飽和度は多くの地点で100%を超 えており、特に海岸前線部の調査地1では全層で全塩 基飽和度が 1000% を超えていた(Table 2)。

4.考察

1) 津波が海岸林未熟土に及ぼした影響

本研究による津波被災マツ林における土壌調査結果 と既往の海岸林研究の土壌調査結果の比較から、海水 浸漬は海岸マツ林土壌の理化学性に強く影響したこと が明らかとなった。

津波被災マツ林の土壌断面形態から、1) もともとの リター層と林床の下層植生が津波によって剥離、流失 したこと、2) 林床には津波によって運ばれた海砂が厚 く堆積したこと、3) もともとの土壌表層を構成して いた A 層が堆砂層の下に埋没したこと、の3 点を津 波による最も特徴的な影響として挙げることができる (Table 1)。

土壌の化学性に関しては、堆砂下に埋没した A 層(2A 層)で、津波の影響がより顕著に現れた(Table 1)。 津波浸漬土壌における pH(H₂O)は、全般に堆砂層 で著しく高く(7.0~9.6)、2A 層、2C 層も中性~弱 アルカリ性の値(それぞれ 6.6~7.7、6.9~8.1)で 高い傾向を示した(Table 1)。一方で、津波未浸漬土 壌の A 層は明らかに酸性であったことから(Table 2)、 pH が 8.0 程度とされる海水(松井・一国 1970)の浸 漬や、海水や海塩を含む海砂の堆積が津波浸漬土壌の pH(H₂O)に顕著な影響を与えたと考えられる。

津波浸漬土壌における EC や CEC、交換性塩基含量 は、津波未浸漬土壌と同等のレベルを示した(Table 1)。 ECは全般に高く、特に腐植に富む2A層では著しく 高い値であった。一方、CEC は砂質で構成される未熟 土であることを反映して、全般に低かった。津波浸漬 土壌では低い CEC 値を反映して交換性 Ca²⁺、Mg²⁺、 Na⁺、K⁺含量も全般に低かった。また、堆砂層および 2A 層での交換性 Ca²⁺、Mg²⁺、Na⁺ 含量は、2C 層に比 べ高い傾向がみられた。これは特に堆砂層および 2A 層において海水(海塩)の影響が強く残っていること を示している。各塩基の飽和度は、CEC の値が低いた め、全般に高く、100%を超える土壌も多く存在した (Table 1)。調査時期や調査箇所などが異なるため、単 純に比較することはできないが、津波浸漬7ヶ月後の 海岸林における土壌中の塩基含量はこれまで調査され た海岸林土壌の範囲内にあり、津波浸漬に関する塩基 状態への影響は明らかでなかった(Tables 1 & 2)。

今回の東日本大震災では、東太平洋沿岸の各地で地 盤沈下したことが報告されている(国土交通省東北 地方整備局 2011a, b)。本研究の調査地である吉田浜 の試験地では65 cmの深度に地下水面が確認された (Table 1, Photo 2)。本来、樹木の根系は地下水に触れ ない土壌深で発達するが、本研究では地下水に水没し たマツの根系が確認された(Photo 2)。津波浸漬前は 表層土壌であった 2A 層は樹木や下層植生の根系が発 達し、植物の養分吸収を助ける根圏微生物の活動層で あったと考えられるので、この層位における pH (H₂O) の劇的な変化がマツの根やマツと共生関係にある菌根 菌等の生物相に与えた影響は著しく大きいものと考え られる。同時に地下水面の相対的な上昇とそれに起因 する根圏土壌の水没は、マツ細根の腐れや生理活性低 下などを招く直接的なストレスの原因になったと推察 される。一方、交換性塩基含量に関する分析では下層 部の C 層において津波浸漬による明瞭な影響を認めな かった(Tables 1 & 2)。このことは排水不良のため、 津波浸漬7ヶ月後においても土壌上層で認められた津 波浸漬による土壌化学性への影響が下層にまで及んで いない可能性を示唆している。

2) 津波の被害を受けていない海岸林の未熟土における 土壌化学性の検討

これまでの研究結果によると、海岸林の土壌はおお むね未熟土であり、主として腐植に極めて乏しい砂の 堆積層で構成され、土壌構造や土壌層位の分化、発達 は認められない(農林水産技術会議,1987,田中ら, 1992a, b)。これは海岸林砂丘における土壌断面の特徴 であり、北陸地域の海岸林土壌の調査結果とも一致し ていた(千木 1993, 2005,河田 1987a, b)。

また、津波の被害を受けていない海岸林土壌の EC

は土壌上層部や海側の調査地を中心に全般的に高かった(Table 2)。千木(2005)は、スギなどの耐塩性の低い樹種を除き海岸砂地における土壌 EC は 0.2 dS m⁻¹以下であれば海塩による生育障害は問題ないとしている。対象地である茨城県の海岸林では、A 層や HA 層の土壌上層部や最も汀線に近い海側の調査地では 0.2 dS m⁻¹を超えていた(Table 2)。こうした高い EC 値は潮風に乗って頻繁に海岸林へもたらされた飛砂や飛塩(村井ら 1992)が土壌上層部および海側の 海岸林土壌に恒常的に降下し、その塩類を蓄積させていることを示唆している。一方、CEC や交換性塩基含量は低かった(Table 2)。これは粘土や腐植が乏しく、 主に砂で構成される未熟土では交換性塩基を吸着する 能力が著しく低いことに起因する。

海岸林土壌のpH(H₂O)は腐植の混入が認められ た A 層や HA 層で低く、下層ほど高い(Table 2)。こ のような土壌断面内の pH (H₂O)の垂直的変化は海 岸林土壌の最も大きな特徴であると考えられる。海岸 林土壌の林床から土壌表層においては堆積有機物や腐 植に由来する有機酸が存在しているため、その存在が 土壌のpH(H₂O)に影響する。そのため、特にA層 や HA 層などの土壌表層で酸性化が認められたと思わ れる。腐植の混入が少ない下層や、汀線近くの調査地 1の土壌全層においては土壌の酸性化は認められず、 海塩や海砂に由来する高濃度の塩基類を反映した土壌 pH(H₂O)を示しているものと考えられた。これらの 結果も、北陸地域の海岸マツ林土壌の特徴と良く一致 した(千木 1993, 2005, 河田 1987a)。これらから、 海岸砂丘地の土壌は、山地の森林土壌に比べて未熟な 土壌であり、pH(H₂O)や塩類含量、塩基飽和度など の土壌化学性からみて、植物の生育上、大変厳しい土 壌環境であると言える。

3) 海岸マツ林の再生に向けて

今回の大地震は膨大なエネルギーを有した津波を引 き起こし、マツ林の多くは壊滅的な被害を受け、直後 に速やかに枯死した(坂本 2011, 2012)。しかし、津 波の直接的なダメージを免れて生残した樹木でもその 後に塩害による針葉の変色、樹勢衰弱や萎凋が発生し た(中村 2011)。こうした状況は、日本の海岸林の主 要な構成樹種であるクロマツは、海岸の未熟な土壌で も生育できるが、必ずしも津波に強いとは言いがたく、 アカマツについてはむしろ脆弱とさえいえる(中村 ら 2012)。このような背景から、海岸林を広葉樹で再 生することが検討され始めている(宮城県森林整備課 2012)。

津波浸漬後の海岸林では、マツが枯損したような場 所でも残存、生残した広葉樹が各地で確認されている。 同様に、津波による林床のリター層や下層植生の流失、 さらには厚い海砂の堆積によって裸地化した海岸林跡 地には多くの海岸性草本の侵入も認められている。海 岸林は防風、飛砂防止、防潮、防霧、飛塩防止、海岸 侵食防備、景観・保健休養ほかの多面的機能をもつ(村 井ら 1992)。これらの機能を発揮する海岸林を時間を かけて回復させるのであれば、必ずしもマツだけにこ だわる必要はないと考えられる。マツだけでなく広葉 樹や海岸性草本類、土木施設等、個々の特性を把握、 理解し、それらの利点を活かしながら、海岸林を再生 していくことも可能であると思われる。

一方、被災地では早期の生活基盤の復旧、復興を望 む声もあり、そのためには飛砂防止や防風効果に効果 的な海岸林の早期再生が不可欠である。今後再生が検 討される海岸林の造成地の多くは津波浸漬後の砂丘砂 地であると考えられるが、広葉樹が生育、更新できる のは土壌が相応に発達して、風衝の弱い場所、あるい は造成工事でそのように改善できる場所である(矢神 2005)。早期の海岸林の復旧には砂質土壌で造成方法 が既に確立されているクロマツをまず植栽し土壌生成 を促した後、広葉樹導入など多様な海岸林に誘導する ことが望ましい。本研究で示したように、津波被災海 岸林の多くでは地盤沈下に伴う排水悪化による土壌へ の影響が認められている。津波被災海岸林では今後再 生に向けた植栽が活発になると思われるが、まず生物 活性の高いA層の化学性改善を図り、新規植栽木への 影響を排除した後、海岸林を再生することが重要であ る。そのためには試験的な植栽を行い、活着への影響 を検討する必要がある。

本研究の結果は、主に砂で構成され、有機物や養分 に乏しい海岸林の砂丘未熟土においては、海水浸漬に よる土壌環境や理化学性の変化が植物の生育に大きく 影響を及ぼす可能性を示している。ここで明らかにし た津波浸漬土壌の化学性データは今後の海岸林の再生 に向けて重要な指標となる。これらのデータは、植栽 の可否判断のための植栽可能樹種の選定や土壌改良の 方針検討に有効と考えられる。

謝辞

本研究の遂行にあたり、独立行政法人森林総合研究 所東北支所 澤井恵子氏には本研究における試料調 製、実験補助などにおいて多大なるご協力を頂いた。 本報告をまとめるにあたって、独立行政法人森林総合 研究所東北支所 新山馨地域研究監、並びに野口正二 森林環境研究グループ長には懇切なご助言、ご指導を 頂いた。森林総合研究所多摩森林科学園 勝木俊雄氏 には調査地に生育するサクラ類の同定にご協力頂い た。本研究の実施にあたり、宮城北部森林管理署には 試験地の提供等でご協力頂いた。これらの方々に深く 感謝の意を表する。

本研究は、森林総合研究所運営費交付金「F2 Р

07:東日本大震災で被災した海岸林の復興技術の開 発」によって行われたものである。

このたびの地震津波で被災された方々に、心からお 見舞い申し上げる。

引用文献

- 土じょう部(1976)林野土壌の分類(1975),林試研 報,280,1-28.
- 東日本大震災に係る海岸防災林の再生に関する検討 会 (2012) "今後における海岸防災林の再生につい て .", http://www.rinya.maff.go.jp/j/press/tisan/ pdf/120201-01.pdf, (参照 2012-12-26)
- 星野大介(2012)東北地方太平洋沖地震津波による岩 手県沿岸の海岸林と集落の被害状況,日林誌,94, 243-247.
- 宮城県森林整備課(2012)海岸防災林に適した植栽樹 種に関する調査報告書 17 pp.
- 河北新報社 (2011) 河北新報新聞朝刊記事, 2011 年 6 月 7 日
- 河田弘(1987a)海岸砂丘地におけるクロマツ林とニ セアカシア林のリターフォールによる土壌への養 分還元量の相違とそれが土壌の諸性質に及ぼす影 響 新大演報 20, 51-66.
- 河田弘(1987b)海岸砂丘地におけるクロマツ林土壌 に関する研究―土壌の理化学的性質および林床植 生と微地形との関係― 新大演報 20, 79-100.
- 経済企画庁総合開発局(1972)国土調查(宮城県)
- 経済企画庁総合開発局(1970)国土調査(青森県)
- 国土交通省東北地方整備局 (2011a)"宮城県沿岸 部における地震に伴う地盤沈下について" http://www.thr.mlit.go.jp/Bumon/kisya/saigai/ images/35353 1.pdf (参照 2012-10-19)
- 国土交通省東北地方整備局(2011b)"岩手県沿岸部 における地震に伴う地盤沈下について" http:// www.thr.mlit.go.jp/bumon/b00037/k00290/riverhp/kasen/110622-1.pdf(参照2012-10-19)
- 松井義人・一国雅巳 (1970) メイスン一般地球科学,岩 波書店,402 pp.
- 間藤徹(1989)塩性植物はなぜ塩に強いのか? 耐 塩性植物育種の可能性を探る– 生物と科学 27, 139-141.
- 間藤徹(1997)植物の耐塩性メカニズム 植物の化学 調節 32, 198-206.
- 村井宏・石川政幸・遠藤治郎・只木良也(1992)日本 の海岸林-多角的な環境機能とその活用 株式岩 社ソフトサイエンス社 513 pp.
- 中村克典(2011) 東日本太平洋沖地震津波による被災 マツ林で必要とされるマツ材線虫病対策,森林技 術,835,18-22.

- 中村克典・小谷英司・小野賢二(2012)津波被害を受けた海岸林における樹木の衰弱・枯死 森林科学 66,7-12.
- 農林水産技術会議事務局(1987)環境変化に対応した 海岸林の環境保全機能の維持強化技術の確立に関 する研究 研究成果185:農林水産省農林水産技 術会議事務局144 pp.
- 農林水産省農村振興局 (2011) "農地の除塩マニュア ル",農林水産省 http://www.maff.go.jp/j/press/ nousin/saigai/pdf/110414-01.pdf (参照 2012-10-19)
- 小野賢二・平井敬三(2012)東日本太平洋沖地震大津 波が三陸沿岸地域におけるスギ林針葉の赤褐変化 に及ぼした影響 森総研報 11, 33-42.
- 林野庁・林業試験場(1955)国有林林野土壌調査方法 書 42 pp.
- 坂本知己 (2011) "現地調査報告 海岸林被害の視点から ." http://www.rinya.maff.go.jp/j/tisan/tisan/pdf/ siryou4.pdf, (参照 2012-10-19)
- 坂本知己(2012) 津波によって被災した海岸林の再生 にむけて 水利科学 56, 39-61.

- 千木容(1993)石川県における森林土壌の分布(I)
 一砂丘未熟土の分布一石川県林試研報 24, 37-41.
- 千木容(2005)健全性の保たれている海岸クロマツ林の土壌について 石川県林試研報 37, 9-12.
- 田中永晴・森田佳行・古澤仁美・小林繁男(1992a) 東海村海岸林砂丘未熟土の細区分(I) — クロマ ツの生育と土壌断面形態、微地形、汀線からの距 離の関係 — 日林論 103, 265-266.
- 田中永晴・古澤仁美・森田佳行・小林繁男(1992b) 東海村海岸林砂丘未熟土の細区分(II) — 一般化 学性および塩基状態 — 日林論 103, 267-270.
- 矢神徳彦(2005)石川県における海岸林植生と樹種転 換に適した樹種の選定 石川県林試研報 37, 1-8.
- 米田茂男 (1958a) 塩害と土壌 [1], 農業及園芸, 33, 1028-2032.
- 米田茂男(1958b) 塩害と土壌[2], 農業及園芸, 33, 1077-1080.
- 米田茂男 (1958c) 塩害と土壌 [3], 農業及園芸, 33, 1338-1342.

(1 NO 1) 5 4 ġ Da rth Toholo of No 4 Ę. - inite dato. \$ ot and coile in th t for ditio 表 1. 津波被 Table 1. Con

and a second of the second se							н И И					
山 · 王 · 四 · 一 · 四 · 一 · 山 · · · · · · ·		•	前線部			i I	K		後背	书		
調査地点の概況												
林冠構成種			クロイ	ن ت					クロマツ、フ	~ カマツ		
マンの被災状況			枯死						部柱	死		
下層植生		イタチハ	<i>.</i> , 7%,	テリンノイ	バラ		Y	タチハギ、	セマウルシ	い、オオシ	マザクラ	
有効土壌深(cm)			65+						65+			
土壌断面情報												
A ₀ 層厚 (cm)			わずフ	5					0.5			
	第1層	位	第2層	位	第3層	拉	第1層	位	第2層	位	第3層1	다.
層位	挿 一	置	2A		2C		推砂	THE I	2A		2C	
屠厚 (cm)	48		с С		13+		32		2 2		28+	
土性*	S		LS		S		S		LS		S	
十色	2.5Y4	/3	2.5Y2	/1	2.5Y5	/3	2.5Y4	/2	2.5Y3	/1	2.5Y4/	4
土壤化学性												
	第1層	位	第2層	位	第3層	拉	第1層	位	第2層	位	第3層	뉵
	測定値	SD	測定値	SD	測定値	SD	測定値	SD	測定値	SD	測定値	SD
pH(H ₂ O)	9.6	0.3	7.1	0.3	7.8	0.0	8.4	0.5	7.0	0.2	7.4	0.4
EC [*] (dS m ⁻¹)	0.7	0.8	2.4	0.0	0.9	0.6	0.8	0.2	2.5	0.5	0.0	0.4
CEC ^{**} (cmol _c kg ⁻¹ 乾土)	1.5	0.2	22.2	15.7	3.6	0.7	2.0	0.6	16.1	4.7	4.4	0.4
Ex. Ca ^{2+**} (cmol _c kg ⁻¹ 乾土)	6.3	1.1	7.2	4.0	0.8	0.8	7.1	1.5	6.3	1.9	0.7	0.0
Ex. Mg ^{2+**} (cmol _c kg ⁻¹ 乾土)	1.6	0.0	5.6	6.5	0.7	0.1	2.7	0.5	2.9	2.1	0.7	0.2
Ex. Na ^{+**} (cmol _c kg ⁻¹ 乾土)	2.3	0.6	3.9	3.2	0.7	0.5	2.5	0.3	2.6	0.0	0.5	0.1
Ex. K ^{+**} (cmol _c kg ⁻¹ 乾土)	0.2	0.1	0.3	0.2	0.2	0.1	0.2	0.0	0.3	0.1	0.2	0.1
Ca ²⁺ 飽和度(%)	426.7	88.6	38.8	10.9	19.5	16.6	356.4	39.1	40.2	12.8	16.2	3.0
Mg ²⁺ 飽和度(%)	111.7	69.3	19.5	11.2	19.4	0.0	139.2	37.4	16.3	10.3	15.5	3.2
Na ⁺ 飽和度(%)	153.3	44.5	17.7	0.7	18.1	9.6	128.7	6.4	15.8	3.6	12.0	1.5
K⁺飽和度(%)	16.3	6.2	1.5	0.4	6.0	2.6	11.3	1.2	1.9	0.3	5.8	2.4
全塩基飽和度(%)	708.0	207.1	77.5	7.7	63.0	24.9	635.7	27.6	74.2	21.0	49 <u>.</u> 6	4.7
[*] S:砂土, LS:镶質砂土												

表 1. つづき (その 2) Table 1. continued, (NO.2)												
調査地			後背地(前)		浜	4		後背地()	後)		
調査地点の概況												
林哥權成種			アカマ	2					アカマ	2		
ドにはないまで、			、 年 位 七						- 一部 一	、存		
下層植生	オオシマナ	ドクラ、ニー	セアカシア	ッタウル	レシ、ヤマ	ぐれぐ	オオシマナ	チクラ、ニ	セアカシア、	ッタウル	シ、ヤマウ	いう
有効土壌深(cm)			50+						40+			
土壤断面情報												
A ₀ 層厚 (cm)			2						2			
•	第1層(ᅻ	第2層1	ᅻᅿ	第3層	位	第1層(拉	第2層(ᅻᅿ	第3層(4
層位	堆砂厚	ЪШm	2A		2C		堆砂厚	Ŋ₽m	2A		2C	
層厚 (cm)	13		ი		284		32		5		28+	
土 性*	S		S		S		S		S		S	
十色	2.5Y4/	4	10YR2	/3	10YR	3/4	2.5Y4/	33	10YR2	/2	10YR4	4
土壤化学性												
	第1層(ᅻ	第2層/	ᅻᅿ	第3層	位	第1層	년 년	第2層(ᅻᅿ	第3層(
	測定値	SD	則定値	SD	測定値	SD	測定値	SD	測定値	SD	測定値	SD
pH(H ₂ O)	7.3	0.2	6.6	0.2	7.0	0.2	7.0	0.5	6.9	0.5	6.9	0.5
EC [*] (dS m ⁻¹)	0.2	0.1	1.5	0.2	0.4	0.1	0.4	0.1	2.0	0.6	0.8	0.5
CEC ^{**} (cmol _c kg ⁻¹ 乾土)	5.3	0.2	18.8	1.4	7.6	1.1	5.8	0.3	23.3	5.1	7.2	1.0
Ex. Ca ^{2+**} (cmol _c kg ⁻¹ 乾土)	0.6	0.1	1.6	0.5	0.3	0.2	1.2	0.6	2.0	0.5	0.2	0.0
Ex. Mg ^{2+**} (cmol _c kg ⁻¹ 乾土)	1.2	0.1	2.8	2.3	0.6	0.3	1.5	0.7	4.5	2.4	0.4	0.1
Ex. Na ^{+**} (cmol _c kg ⁻¹ 乾土)	0.3	0.1	1.5	0.4	0.6	0.2	0.3	0.2	2.6	0.4	0.8	0.1
Ex. K ^{+**} (cmol _c kg ⁻¹ 乾土)	0.4	0.0	0.4	0.0	0.2	0.0	0.6	0.2	0.7	0.1	0.3	0.0
Ca ²⁺ 飽和度(%)	11.4	2.2	8.4	2.1	4.0	1.6	20.2	8.3	8.5	0.4	2.2	0.6
Mg ²⁺ 飽和度(%)	22.5	1.9	14.7	11.3	7.9	3.8	25.4	<u>6</u> .6	18.1	7.4	5.6	1.8
Na⁺飽和度(%)	5.4	1.9	8.1	2.3	8.3	1.7	4.4	2.6	11.1	0.7	11.3	3.0
K ⁺ 飽和度(%)	6 <u>.</u> 9	0.6	2.1	0.1	3.3	0.5	10.2	3.6	3.0	0.8	4.2	1.0
全塩基飽和度(%)	46.3	<u>3.9</u>	33.4	<u>6</u> .6	23.4	5.3	60.2	20.9	40.6	6.4	23.3	6.3
[*] S:砂土, LS:壤質砂土												

1. つづき (その3)	ble 1. continued, (NO.3)
表 1.	Table

調査地			前線音	5		山			後背	白		
調査地点の概況												
林 眎 構 岤 循			クロク	<i>[</i> ,,					クロク	<i>(</i> ,,		
下に合わるは、マンのある状況			1 号	死					1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	死		
下層植生		5	マウルシ、-	ヤマグワ				Ņ	タウルシ、	ヤマグワ		
有効土壌深(cm)			58+						72+			
土壤断面情報												
A ₀ 層厚 (cm)			ę						ę			
	第1層(17	第2層	വ	第3層,	펀	第1層	句	第2層·	വ	第3層 20	拉
層位 躍亘 (cm)	御 の の の の の の の の の の の の の の の の の の	ЮШ	2A		2C 22+		単 し の の	囲	2A 8		2C 14+	
/百凈 (om) 十 本*	4 v		r ر				3 v		o o		ξ თ	
中	2.574/	2	2.572	1	2.5Y3	5	2.574	/2	2.572	1	2.5Y3	/2
土壤化学性												
	第1層(ㅋㅋ	第2層·	拉	第3層,	互	第1層	位	第2層	拉	第3層	拉
	測定値	SD	測定値	SD	測定値	SD	測定値	SD	測定値	SD	測定値	SD
pH(H ₂ O)	8.6	0.5	7.0	0.4	7.4	0.5	0.6	0.2	7.7	0.0	8.1	0.3
EC [*] (dS m ⁻¹)	1.7	0.3	6.9	1.9	1.1	0.8	2.4	0.5	5.4	0.4	0.8	0.2
CEC ^{**} (cmol _c kg ⁻¹ 乾土)	8.8	1.5	23.7	14.5	4.0	0.1	12.0	1.3	26.7	3.2	3.5	0.4
Ex. Ca ^{2+**} (cmol _c kg ⁻¹ 乾土)	8.8	0.2	3.2	0.3	0.7	0.2	9.7	0.3	4.4	1.5	0.5	0.1
Ex. Mg ^{2+**} (cmol _c kg ⁻¹ 乾土)	2.9	0.5	4.5	0.6	0.0	0.2	3.5	0.4	5.5	1.1	0.7	0.1
Ex. Na ^{+**} (cmol _c kg ⁻¹ 乾土)	1.3	0.4	9.2	5.6	1.9	0.3	2.5	0.3	9.1	2.2	1.8	0.2
Ex. K ^{+**} (cmol _c kg ⁻¹ 乾土)	1.8	0.4	1.2	0.5	0.5	0.1	2.2	0.1	1.2	0.2	0.4	0.0
Ca ²⁺ 飽和度(%)	101.7	16.5	17.3	9.1	16.8	4.6	82.1	10.3	16.2	4.2	15.3	3.0
Mg ²⁺ 飽和度(%)	32.8	1.3	22.5	9.2	21.4	3.5	29.1	3.3	20.5	1.7	18.9	2.1
Na⁺飽和度(%)	14.7	4.6	39 <u>.</u> 2	4.7	46.4	7.0	21.3	4.4	33.9	4.6	52.2	2.3
K ⁺ 飽和度(%)	20.8	1.0	5.6	1.2	11.2	2.1	18.9	2.6	4.4	0.3	10.8	0.2
全塩基飽和度(%)	170.0	16.5	84 <u>.</u> 6	20.3	95.7	14.5	151.5	18.6	75.0	8.6	97.3	7.1
[*] S:砂土, LS:壤質砂土												

		第1			2. 東	2			(東				海4	
遥 仲 名 幽米表 市 6 南谷	茨切	。 県北茨城r			茨城県北	茨城市			茨城県北	茨城市		Ķ	成県東海村	
<u>酮宜地从い枫况</u> 優占種	<u>7</u> п-	マツ、スズタ	4		クロマツ、タ	ブ、ツバキ			クロマツ、タ <u>-</u>	ブ、ススキ		н 11 11 11 11 11 11 11 11 11 11 11 11 11	1.1+, ZZ	9 <i>1</i> 7
(m)		150			25(18(770	
书 形		砂丘上			砂口	ч			砂日	ч			砂丘斜面	
林齢(year)		51			51				67				125	
立木密度(本/ha) 正在地声()、		不明 2.5			Ъ.	町			下。	E .			不明 5.4	
半均倒尚(m) 平均胸高直径(cm)		15.1			28	იო			18.	- 4			35.9	
<u>土壤断面情報</u> 層付	第1層位 A	第2層位 AB	第3層位 BC	第1層位 HA	第2層位 A	第3層位 AB	第4層位 BC	第1層位 H	第2層位 A1	第3層位 A2	第4層位 B	第1層位 A1	第2層位 AB	第3層位 BC
语正 層厚 (cm)	10	10	+09	ς Υ	19	40	18+	: ო	7	24	50+	16	16	38+
土性**	S	S	S	S	S	S	S	S	S	S	S	S	S	S
土壤化学性														
pH(H ₂ O)	5.0	6.9	8.2	4.9	5.5	6.1	8.2	3.7	4.2	6.2	8.4	4.4	4.4	5.0
EC (dS m ⁻¹)	7.8	3.0	2.0	50.7	3.6	1.8	1.8	n.d.	n.d.	4.1	3.5	11.5	4.2	n.d.
CEC (cmol _c kg ⁻¹ 乾土)	5.7	2.3	0.8	26.1	3.7	1.1	1.0	68.6	8.9	2.3	0.0	7.1	2.1	1.1
Ex. Ca ²⁺ (cmol _c kg ⁻¹ 乾土)	2.8	3.3	2.7	9.4	2.1	1.0	4.0	10.5	6 [.] 0	1.9	5.1	1.2	0.3	0.1
Ex. Mg ²⁺ (cmol _c kg ¹ 乾土)	1.0	0.3	0.1	5.5	6 ⁻ 0	0.5	0.2	8.4	0.7	0.6	0.1	0.6	0.1	0.1
Ex. Na ⁺ (cmol _c kg ⁻¹ 乾土)	1.3	0.0	0.5	3.7	1.0	0.4	0.8	8.5	1.2	0.8	0.6	0.6	0.4	0.6
Ex. K ⁺ (cmol _c kg ¹ 乾土)	0.3	0.2	0.2	0.0	0.2	0.2	0.2	2.6	0.5	0.2	0.1	0.3	0.1	0.2
Ca ²⁺ 飽和度(%)	49.3	142.1	335.4	36.1	55.6	94.4	413.4	15.3	10.2	83.8	584.1	17.5	14.1	12.8
Mg ²⁺ 飽和度(%)	18.0	14.6	15.2	21.2	24.1	41.7	24.7	12.2	8.1	26.8	13.6	8.1	5.6	7.3
Na ⁺ 飽和度(%)	22.6	40.3	68.4	14.3	25.9	36.1	83.5	12.4	13.1	35.1	64.8	8.9	16.4	50.5
K⁺飽和度(%)	5.1	7.3	19.0	3.4	4.8	15.7	19.6	3.7	5.2	9.9	15.9	3.5	6.1	13.8
全塩基飽和度(%)	94.9	204.3	438.0	75.0	110.4	188.0	541.2	43.6	36.5	152.2	678.4	38.0	42.3	84.4
「調査地 海1~9は環境庁一括計上国 ((農林水産技術会議事務局 1987)に	立期間公害防おける調査地	止等試験研究 調査地1-11	[課題 「環境」で はそれい降の	化に対応した? 繰続調査(田)	毎岸林の環境 中ら 1992a. b)	保全機能の維め調査地	持強化技術 の	の確立に関する	研究」					
**S:砂土, LS:壤質砂土														
***試料不足のため、測定不可														

表 2. つづき(その 2) Table 2. continued, (NO.2)																
·····································		漸	2			9庚			2 奥					8期		
還)何 ら 歯 人 支 古 (甫 亡		茨城県列	東海村		崁	城県東海村			茨城県東	海村			茨	成県東海村		
<u>酮宜地品00概况</u> 優占種		クロマ	~~~			クロマツ			クロマツ、	アベー			9 0 2	י"ריק"	7	
 東 か ら の 昭 講 (m)		800				290			100	•			•	80		
拍形		砂日	ч			砂丘上			。 切 日 -	Ц				砂丘底		
林齡 (year)		47				43			不明					不明		
立木密度(本/ha) 二:二二		Ε. Έ	町。			不明			キー					を出		
半均衡局(m) 平均胸高直径(cm)		10.1	റെ			14.5 26.8			← ≮≕ ≕					◆ ≮ 野 明		
土壌断面情報	第1層位	第2層位	第3層位	第4層位	第1層位	第2層位	第3層位	第1層位	第2層位	第3層位 貧	育4層位	第1層位	第2層位	第3層位	第4層位 第	5層位
層位	A1	B1	B2	BC	۷	в	с	Η	AB	ш	с	A	5	C2	S	C4
層厚 (cm)	2	12	ω	30	£	10	+09	2	7	12	38	5	10	15	40	35+
土性**	S	S	S	S	S	S	S	S	S	S	S	LS	rs	rs	LS	rs
土壤化学性																
pH(H ₂ O)	4.3	4.8	5.4	7.6	4.5	5.5	7.6	4.6	7.8	8.5	8.7	6.0	8.5	8.9	8.8	8.9
, EC (dS m ⁻¹)	5.6	1.4	0.9	1.6	n d.	1.1	3.2	120.1	3.0	2.6	3.0	3.2	2.9	2.6	2.9	2.9
ccEC (cmol _c kg ⁻¹ 乾土)	3.7	1.4	0.5	0.5	3.2	0.9	0.8	21.3	1.9	1.0	1.1	1.3	1.3	1.0	0.6	1.2
Ex Ca ²⁺ (cmol _c kg ¹ 乾土)	0.4	0.1	0.2	0.8	0.6	0.3	4.1	12.6	3.7	6.1	9.9	1.2	5.2	5.8	5.3	5.4
Ex. Mg ²⁺ (cmol _c kg ⁻¹ 乾土)	0.3	0.0	0.1	0.3	0.4	0.3	0.2	3.2	0.2	0.1	0.1	0.3	0.2	0.1	0.2	0.2
Ex. Na ⁺ (cmol _c kg ⁻¹ 乾土)	1.2	0.6	0.4	0.8	0.3	0.5	0.2	1.0	0.5	0.2	0.2	0.5	0.4	0.2	0.4	0.2
Ex. K ⁺ (cmol _c kg ¹ 乾土)	0.2	0.2	0.2	0.2	0.3	0.2	0.2	0.8	0.2	0.3	0.2	0.2	0.2	0.2	0.2	0.2
Ca ²⁺ 飽和度(%)	10.6	8.4	31.9	163.8	17.2	28.7	524.4	59.1	194.2	588.3	607.4	90.1	385.8	564.7	924.6	466.1
Mg ²⁺ 飽和度(%)	7.6	2.8	25.5	61.7	12.8	33.3	20.5	15.0	8.5	11.7	11.1	21.4	11.9	11.8	28.1	17.4
Na ⁺ 飽和度(%)	32.2	42.7	76.6	174.5	8.1	51.7	30.8	4.5	26.5	21.4	22.2	38.2	26.1	21.6	63.2	20.0
K⁺飽和度(%)	6.0	10.5	42.6	51.1	10.6	19.5	21.8	3.7	9.5	26.2	15.7	18.3	16.4	23.5	33.3	18.3
全塩基飽和度(%)	56.4	64.3	176.6	451.1	48.8	133.3	597.4	82.2	238.6	647.6	656.5	167.9	440.3	621.6	1049	521.7
「調査地 海1~9は環境庁─括計上」 ((農林水産技術会議事務局 1987)	国立期間公害のにおける調査地	5止 等試験研3 9、調査地1-11	€課題「環境変 Ⅱはそれ以降の	:化に対応した)継続調査(田	海岸林の環境 中ら 1992a, b	保全機能の約)の調査地	持強化技術 の	確立に関する	研究」							
**S:砂土, LS:壤質砂土																
…試料不足のため、測定不可																

62

置大 17*		6烘						~							2		
詞宜地	茶	城県東海村					茨1	成県東海村						茨	或県東海村		
調査地点の概況																	
優占種	クロ -	27,172	أرً ا ال					無植生							クロマツ		
補や心の距離(m)		80						18							67		
若 楞		砂丘斜面					4	砂丘前線							砂丘上		
林齢(year)		不明													11		
立木密度(本/ha)		不明						0							10000		
平均樹高(m) 平均胸高直径(cm)		不 子 思													1.7 5		
土壌断面情報	第1層位	第2層位	第3層位	第1層位	第2層位	第3層位	第4層位	第5層位	第6層位	第7層位	第8層位	第9層位	第1層位	第2層位	第3層位	第4層位 🧯	第5層位
層位	c C	C2	C	ū	C_2	ပိ	C4	C5	ů	C7	ő	ပိ	ō	$^{5}{ m C}$	ပိ	C4	ů
層厚 (cm)	25	27	30+	-	ი	16	8	10	18	24	7	20+	15	20	22	23	20+
土性"	ΓS	ΓS	LS	S	S	S	s	S	S	S	S	S	S	S	S	S	S
土壤化学性																	
pH(H ₂ O)	8.4	8.8	8.8	8.4	8.7	8.9	8.8	8.9	8.7	8.9	0.6	8.9	8.3	8.7	8.9	8.8	80 0.0
EC (dS m ⁻¹)	3.2	2.2	2.9	0.5	98.7	41.9	86.3	40.7	80.9	50.7	44.4	47.9	2.5	28	3.0	3.1	3.1
CEC (cmol _c kg ⁻¹ 乾土)	1.8	0.8	1.7	0.7	0.6	0.6	0.8	0.5	0.7	0.7	0.8	0.7	1.0	60	0.8	0.7	0.7
Ex Ca ²⁺ (cmol _c kg ⁻¹ 乾土)	5.6	5.1	5.9	6.4	5.2	5.7	6.1	5.5	5.7	5.7	5.8	5.7	4.1	5.4	5.2	5.2	4.9
Ex Mg ²⁺ (cmol _c kg ⁻¹ 乾土)	0.3	0.1	0.2	4.7	1.2	0.7	1.1	0.8	1.1	0.0	0.0	0.0	0.2	0.1	0.1	0.1	0.2
Ex. Na ⁺ (cmol _c kg ⁻¹ 乾土)	0.7	0.2	0.5	26.1	4.4	2.2	3.8	2.4	3.4	2.8	2.5	2.7	0.2	03	0.2	0.2	0.3
Ex K* (cmol _c kg ¹ 乾土)	0.2	0.2	0.2	0.9	0.5	0.5	0.6	0.5	0.5	0.5	0.5	0.4	0.2	02	0.3	0.3	0.3
Ca ²⁺ 飽和度(%)	302.7	659.7	341.4	990.8	818.8	956.7	807.9	1009.3	826.1	771.6	748.7	872.3	425.8	604.4	688.0	704.1	704.3
Mg ²⁺ 飽和度(%)	13.6	15.6	9.2	721.5	189.1	121.7	146.1	140.7	158.0	114.9	117.9	130.8	16.5	13 3	16.0	16.2	22.9
Na⁺飽和度(%)	39.1	31.2	29.9	4015.4	681.3	358.3	505.3	440.7	487.0	371.6	325.6	410.8	24.7	28 9	28.0	29.7	41.4
K⁺飽和度(%)	12.5	22.1	10.3	133.8	70.3	75.0	78.9	88.9	72.5	66.2	64.1	67.7	23.7	26.7	34.7	43.2	42.9
全塩基飽和度(%)	367.9	728.6	390.8	5861.5	1759.4	1511.7	1538.2	1679.6	1543.5	1324.3	1256.4	1481.5	490.7	673 3	766.7	793.2	811.4

Soil conditions in coastal pine forests damaged by the Heisei-Sanriku Mega-tsunami following Tohoku Earthquake along the eastern Pacific coast of Japan 2011

表2.つづき(その3)

表 2. つづき(その 4) Table 2. continued, (NO.4)															
* 11 북 편=			ę				4					5			
調宜氾		崁	城県東海村				茨城県]	東海村				茨城県東	〔海村		
調査地点の概況															
陵占 種 ::::::::::::::::::::::::::::::::::::			クロマツ				7 1	2.2				202	<u> </u>		
) 第 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			115				15	0				225			
括形 ★★載 〈			多日底 35				多口。	回於、				砂口% 1	回		
144回(Acqu) 六★協府 /★/ho)			6000									4400	_		
ユンドロズ(Tervina) 平均樹高(m)			2.8				4	2				6.5			
平均胸高直径(cm)			4				8					10			
<u>土壌断面情報</u> _{网件}	第1層位	第2層位	第3層位	第4層位	第5層位	第1層位	第2層位	第3層位	第4層位	第1層位 人	第2層位	第3層位	第4層位	第5層位 貧	€6層位 ○-
層1 層厚 (cm)	5 HA	ى ر	-2 C2 14	رع 15	C₄ 24+	4 0	را 16	28 28	ری 16+	v A	را 13	36 36	50	†ე თ	ر5 12+
大性 ""	S	S	S	S	S	S	S	S	S	S	S	S	S	S	S
土壤化学性															
pH(H ₂ O)	5.8	6.2	5.9	8.5	8.9	6.3	8.1	8 <mark>.</mark> 8	8.9	4.9	8.5	8.8	8.9	8 <u>.</u> 9	8 <u>.</u> 9
EC (dS m ⁻¹)	4.2	2.5	2.7	2.8	2.9	4.4	2.5	2.8	2.5	4.5	2.6	2.7	2.7	2.7	3.0
CEC (cmol _c kg ⁻¹ 乾土)	3.1	1.8	1.8	1.3	1.0	2.7	1.5	0 ⁻ 0	0.7	2.0	1.5	1.0	0.6	0.0	1.1
Ex. Ca ²⁺ (cmol _c kg ⁻¹ 乾土)	1.1	1.0	0.0	4.2	5.0	1.7	3.0	5.5	4.4	0.3	3.1	4.7	4.8	5.5	5.2
Ex. Mg ²⁺ (cmol _c kg ¹ 乾土)	0.7	0.4	0.4	0.3	0.2	0.4	0.1	0.1	0.0	0.2	0.3	0.1	0.1	0.1	0.1
Ex Na ⁺ (cmol _c kg ¹ 乾土)	0.3	0.2	0.2	0.3	0.2	0.2	0.3	0.2	0.3	0.3	0.3	0.3	0.2	0.2	0.2
Ex. K ⁺ (cmol _c kg ⁻¹ 乾土)	0.3	0.2	0.2	0.3	0.2	0.3	0.4	0.2	0.2	0.1	0.2	0.2	0.2	0.2	0.2
Ca ²⁺ 飽和度(%)	36.5	56.4	52.0	324.6	505.1	62.4	201.3	619.1	665.2	15.9	213.7	496.8	796.7	603.3	494.3
Mg ²⁺ 飽和度(%)	22.8	22.7	23.2	25.4	16.3	15.4	8.1	0.0	6.1	11.9	19.9	8.4	13.3	8.8	7.6
Na⁺飽和度(%)	9.4	11.6	13.6	24.6	19.4	8.6	22.1	23.6	37.9	15.4	17.1	32.6	40.0	25.3	17.1
K⁺飽和度(%)	9.4	11.6	13.6	20.8	17.3	10.2	25.5	18.0	28.8	6.5	15.1	16.8	35.0	17.6	17.1
全塩基飽和度(%)	78.2	102.2	102.3	395.4	558.2	96.6	257.0	669.7	737.9	49.8	265.8	554.7	885.0	654.9	536.2
 調査地 海1~9は環境庁一括計上 ((農林水産技術会議事務局 1987) 	国立期間公害防1における調査地、	L等試験研3 調査地1-1	□課題「環境刻 □はそれ以降0	変化に対応し、の継続調査(た海岸林の環 田中ら 1992a,	境保全機能の{ b)の調査地	维持強化技術	の確立に関す	る研究」						
**S:砂土, LS:壤質砂土				:											
""試料不足のため、測定不可															

ONO, K. et al.

Table 2. continued, (NO.5)															
置大 44*		9					7					8			
副軍也		茨城県]	東海村			茶	城県東海村					茨城県東	〔海村		
<u>調査地点の概況</u> 優占種		104	77				ショマシン					707	<i>(</i>		
阀 11 宜		26	0				388					390	、		
若 形		斜面	<u>귀</u>				砂丘底					砂丘糸	回		
林齢(year)		2(C				50					50			
立木密度(本/ha)		17(00				2100					270(0		
平均樹高 (m)		1					4.2					7.6			
平均胸高直径(cm)		16	6				7					13			
土壤断面情報	第1層位	第2層位	第3層位	第4層位	第1層位	第2層位	第3層位	第4層位	第5層位	第1層位	第2層位	第3層位	第4層位	第5層位 貧	第6層位
膚位 層厚 (cm)	4 O	4 C	5 C	చి కి	< ∞	12 C	2 ²	3 C	32+ 32+	0 Þ	-13 C	8 C2	S C	*ე თ	C5 12+
、 … 五 工	S	S	S	S	S	S	S	S	S	S	S	S	S	S	S
土壤化学性															
pH(H ₂ O)	5.1	8.6	8.7	8 <u>.</u> 9	5.2	5.7	6.3	6.8	8 <u>.</u> 8	5.4	5.2	5.7	6.9	6.9	6.9
EC (dS m ⁻¹)	3.2	1.9	2.2	2.2	2.2	1.0	0.8	0.7	2.9	4.5	2.1	0.6	0.4	0.3	0.3
CEC (cmol _c kg ⁻¹ 乾土)	2.2	1.2	1.2	0.0	2.1	1.2	1.1	0.0	0.4	4.5	2.1	0.8	0.5	0.6	0.3
Ex. Ca ²⁺ (cmol _c kg ⁻¹ 乾土)	2.0	5.6	5.3	5.6	0.7	0.6	0.7	0.7	4.7	1.6	0.5	0.3	0.3	0.4	0.4
Ex. Mg ²⁺ (cmol _c kg ⁻¹ 乾土)	0.2	0.1	0.0	0.0	0.1	0.2	0.2	0.2	0.0	0.5	0.2	0.2	0.1	0.1	0.1
Ex. Na ⁺ (cmol _c kg ⁻¹ 乾土)	0.2	0.2	0.2	0.2	0.2	0.2	0.1	0.2	0.2	0.2	0.2	0.1	0.2	0.1	0.2
Ex. K ⁺ (cmol _c kg ⁻¹ 乾土)	0.2	0.1	0.1	0.2	0.2	0.2	0.2	0.2	0.2	0.3	0.2	0.1	0.1	0.1	0.1
Ca ²⁺ 飽和度(%)	91.2	483.5	460.0	655.8	31.6	51.2	63.1	6.77.9	1185.0	36.1	23.2	45.3	64.0	70.0	140.0
Mg ²⁺ 飽和度(%)	7.4	7.0	3.5	4.7	5.7	13.2	14.4	24.4	10.0	11.1	8.2	21.3	16.0	13.3	26.7
Na⁺飽和度(%)	11.2	16.5	15.7	27.9	7.1	13.2	12.6	18.6	40.0	4.0	8.2	14.7	34.0	18.3	63.3
K⁺飽和度(%)	7.9	12.2	11.3	20.9	8.5	14.0	16.2	18.6	37.5	6.2	9.2	18.7	26.0	16.7	36.7
全塩基飽和度(%)	117.7	519.1	490.4	709.3	52.8	91.7	106.3	139.5	1272.5	57.4	48.8	100.0	140.0	118.3	266.7
゙調査地 海1~9は環境庁─括計上[((農林水産技術会議事務局 1987)	国立期間公害防における調査地	5止等試験研30 調査地1-1	究課題「環境」	変化に対応したの総結調査(甲	海岸林の環境 中に 1992a F	気保全機能の (の調査地	維持強化技術の	の確立に関す	る研究」						
·····································					- -										
0.1211, 10.141511 ***詰地内店67そ 単小人口															
現在すた 行 り に るく、 別 た た ち															

Soil conditions in coastal pine forests damaged by the Heisei-Sanriku Mega-tsunami following Tohoku Earthquake along the eastern Pacific coast of Japan 2011

表2.つづき (その5)

表 2. つづき(その 6) Table 2. continued, (NO.6)																
11-1			6						10					11		
調宜地			茨城県]	東海村				崁	城県東海村				崁	城県東海村		
調査地点の概況																
優占種			<u> 7 п.</u> -	<i>۲</i> . ۲					無植生					クロマツ		
海からの距離 (m)			51.	8					573					720		
地形			砂丘(恒应					砂丘底					砂丘上		
林龄(year)			4	-										50		
立木密度(本/ha)			580	0					0					4600		
平均樹高(m) 平均胸高直径(cm)			4.	4										4.2 6		
土壌断面情報	第1層位	第2層位	第3層位	第4層位	第5層位	第6層位	第1層位	第2層位	第3層位	第4層位	第5層位	第1層位	第2層位	第3層位	第4層位 🧯	第5層位
層位	A	õ	$^{\rm C}{ m C}$	ő	C O	C5	A	õ	C_2^2	ပိ	C4	A	õ	C_2	ပိ	C4
屠厚 (cm)	10	10	18	12	20	30+	с	17	30	42	18+	с	44	15	13	10
土住*	S	S	S	S	S	S	S	S	S	S	S	S	S	S	S	S
土壤化学性																
pH(H ₂ O)	5.3	5.6	6.5	6.7	7.5	8.3	5.4	5.5	7.8	7.7	7.3	5.6	6.3	6.4	69	7.0
EC (dS m ⁻¹)	1.9	0.8	0.6	0.7	0.9	1.1	3.0	1.4	1.1	0.5	0.6	8.5	0.5	0.3	0.4	0.6
CEC (cmol _c kg ⁻¹ 乾土)	2.6	1.3	1.3	1.3	1.3	1.2	2.5	1.6	1.0	0.5	0.4	9.2	0.5	0.4	05	0.5
),Ex. Ca ²⁺ (cmol _c kg ⁻¹ 乾土)	0.4	0.3	0.6	0.8	1.7	1.0	0.0	0.5	1.4	0.5	0.4	5.3	0.5	0.4	05	0.5
Ex. Mg ²⁺ (cmol _c kg ⁻¹ 乾土)	0.2	0.3	0.3	0.3	0.1	0.2	0.3	0.2	0.1	0.0	0.0	0.4	0.0	0.0	00	0.0
Ex Na ⁺ (cmol _c kg ⁻¹ 乾土)	0.2	1.0	0.2	0.2	0.2	0.1	0.1	0.2	0.1	0.1	0.3	0.2	0.1	0.1	02	0.1
Ex. K ⁺ (cmol _c kg ¹ 乾土)	0.2	0.3	0.3	0.3	0.1	0.2	0.2	0.2	0.1	0.1	0.2	0.2	0.1	0.1	0 2	0.1
Ca ²⁺ 飽和度(%)	16.2	24.1	44.5	63.2	136.5	86.6	36.8	29.7	143.9	108.2	92.5	57.4	98.1	100.0	100 0	104.0
Mg ²⁺ 飽和度(%)	8.1	18.8	25.8	23.2	6.3	13.4	11.3	10.3	12.2	0.0	0.0	4.5	0.0	0.0	00	0.0
Na ⁺ 飽和度(%)	9.3	75.2	18.8	12.0	13.5	11.8	5.7	11.0	14.3	26.5	72.5	2.6	18.5	28.6	36.7	16.0
K⁺飽和度(%)	8.1	18.8	25.8	23.2	6.3	13.4	7.7	9.7	12.2	24.5	42.5	2.1	20.4	37.1	36.7	24.0
全塩基飽和度(%)	41.7	136.8	114.8	121.6	162.7	125.2	61.5	60.6	182.7	159.2	207.5	66.6	137.0	165.7	173 5	144.0
「調査地 海1~9は環境庁一括計上 ((農林水産技術会議事務局 1987)	国立期間公害(における調査対	坊止等試験研5 也、調査地1-1	究課題「環境〕 1はそれ以降、	変化に対応し」の継続調査()	た 油 岸 林 の 瑞 田 中 の 1992a	境保全機能の b)の調査地	維持強化技術	の確立に関す	-る研究」							
**S:砂土, LS:壤質砂土																
***試料不足のため、測定不可																